三棱錐P-ABC,PA=PB=PC=
73
,AB=10,BC=8,CA=6
,則二面角P-AC-B的大小為
 
分析:解決本題的關(guān)鍵是注意P在底面的射影是斜邊的中點(diǎn),設(shè)AB中點(diǎn)為D過D作DE垂直AC,垂足為E,則∠PED即為二面角P-AC-B的平面角,在直角三角形PED中求出此角即可.
解答:解:因?yàn)锳B=10,BC=8,CA=6 所以底面為直角三角形
又因?yàn)镻A=PB=PC=
73
  所以P在底面的射影為直角三角形ABC的外心,為AB中點(diǎn).
設(shè)AB中點(diǎn)為D過D作DE垂直AC,垂足為E,所以DE平行BC,且DE=
1
2
BC=4,所以∠PED即為二面角P-AC-B的平面角.
因?yàn)镻D為三角形PAB的中線,所以可算出PD=4
3
所以tan∠PED=
PD
DE
=
3
所以∠PED=60°
即二面角P-AC-B的大小為60°
故答案為:60°.
點(diǎn)評:本題考查的知識點(diǎn)是二面角的平面角及求法,其中根據(jù)確定出二面角的平面角是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、下面關(guān)于三棱錐P-ABC的五個命題中,正確的命題有
①③④⑤
.①當(dāng)△ABC為等邊三角形,側(cè)面與底面所成的二面角都相等時,三棱錐P-ABC為正三棱錐;②當(dāng)△ABC為等邊三角形,側(cè)面都為等腰三角形時,三棱錐P-ABC為正三棱錐;③當(dāng)△ABC為等邊三角形,點(diǎn)A在側(cè)面PBC上的射影是三角形PBC的垂心時,P-ABC為正三棱錐;④若三棱錐P-ABC各棱相等時,它的外接球半徑和高的比為3:4:⑤當(dāng)三棱錐P-ABC各棱長相等時,若動點(diǎn)M在側(cè)面PAB內(nèi)運(yùn)動,且點(diǎn)M到面ABC的距離與點(diǎn)M到點(diǎn)P的距離相等,則M的軌跡為橢圓的一部分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐P-ABC中P、A、B、C都在球O面上,且PA、PB、PC兩兩互相垂直,且PA=1、PB=2、PC=3,則該球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐P-ABC中,點(diǎn)P,A,B,C都在半徑為
3
的球面上,若PA,PB,PC兩兩互相垂直,則三棱錐P-ABC的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐P-ABC中,給出下列四個命題:
①如果PA⊥BC,PB⊥AC,那么點(diǎn)P在平面ABC內(nèi)的射影是△ABC的垂心;
②如果點(diǎn)P到△ABC的三邊所在直線的距離都相等,那么點(diǎn)P在平面ABC內(nèi)的射影是△ABC的內(nèi)心;
③如果棱PA和BC所成的角為60°,PA=BC=2,E、F分別是棱PB、AC的中點(diǎn),那么EF=1;
④如果三棱錐P-ABC的各條棱長均為1,則該三棱錐在任意一個平面內(nèi)的射影的面積都不大于
12

其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐P-ABC中,PA⊥平面ABC,AB⊥BC.
(Ⅰ)證明:平面PAB⊥平面PBC;
(Ⅱ)若PA=
6
,PC=3,PB與底面ABC成60°角,求三棱錐P-ABC的體積.

查看答案和解析>>

同步練習(xí)冊答案