A. | 3-2$\sqrt{2}$ | B. | 3$+2\sqrt{2}$ | C. | $\sqrt{2}-1$ | D. | $\sqrt{2}+1$ |
分析 由α的范圍和三角函數(shù)可得t=$\sqrt{2}$sin(α+$\frac{π}{4}$)∈(1,$\sqrt{2}$],sinαcosα=$\frac{1}{2}$(t2-1),換元可得(1+$\frac{1}{sinα}$)(1+$\frac{1}{cosα}$)=1+$\frac{2}{t-1}$,由函數(shù)的單調(diào)性可得.
解答 解:∵α為銳角,即0<α<$\frac{π}{2}$,
∴$\frac{π}{4}$<α+$\frac{π}{4}$<$\frac{3π}{4}$,
∴$\frac{\sqrt{2}}{2}$<sin(α+$\frac{π}{4}$)≤1,
∴t=sinα+cosα=$\sqrt{2}$sin(α+$\frac{π}{4}$)∈(1,$\sqrt{2}$],
平方可得t2=1+2sinαcosα,
∴sinαcosα=$\frac{1}{2}$(t2-1),
∴(1+$\frac{1}{sinα}$)(1+$\frac{1}{cosα}$)=1+$\frac{1}{cosα}$+$\frac{1}{sinα}$+$\frac{1}{sinαcosα}$
=1+$\frac{sinα+cosα+1}{sinαcosα}$=1+$\frac{t+1}{\frac{1}{2}({t}^{2}-1)}$=1+$\frac{2}{t-1}$,
∵y=1+$\frac{2}{t-1}$在t∈(1,$\sqrt{2}$]單調(diào)遞減,
∴當(dāng)t=$\sqrt{2}$時(shí),原式取最小值1+$\frac{2}{\sqrt{2}-1}$=3+2$\sqrt{2}$
故選:B
點(diǎn)評(píng) 本題考查三角函數(shù)的最值,涉及換元法和函數(shù)的單調(diào)性,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,0] | C. | (2,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1 | B. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1 | C. | $\frac{2{x}^{2}}{9}$+$\frac{4{y}^{2}}{9}$=1 | D. | $\frac{{x}^{2}}{9}$+$\frac{2{y}^{2}}{9}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com