【題目】在△ABC中,A,B,C成等差數(shù)列是(b+a﹣c)(b﹣a+c)=ac的(
A.充分但不必要條件
B.必要但不充分條件
C.充要條件
D.既不充分也不必要條件

【答案】C
【解析】解:⑴如圖,若A,B,C成等差數(shù)列:2B=A+C,所以3B=180°,B=60°;
∴由余弦定理得,b2=a2+c2﹣ac;
∴a2+c2﹣b2=ac;
∴(b+a﹣c)(b﹣a+c)=b2﹣(a﹣c)2=b2﹣a2﹣c2+2ac=﹣ac+2ac=ac;
即(b+a﹣c)(b﹣a+c)=ac;
∴A,B,C成等差數(shù)列是(b+a﹣c)(b﹣a+c)=ac的充分條件;
⑵若(b+a﹣c)(b﹣a+c)=ac,則:
b2﹣(a﹣c)2=b2﹣a2﹣c2+2ac=ac;
∴a2+c2﹣b2=ac;
由余弦定理:a2+c2﹣b2=2accosB;
;
∴B=60°;
∴60°﹣A=180°﹣(A+60°)﹣60°;
即B﹣A=C﹣B;
∴A,B,C成等差數(shù)列;
∴A,B,C成等差數(shù)列是(b+a﹣c)(b﹣a+c)=ac的必要條件;
∴綜上得,A,B,C成等差數(shù)列是(b+a﹣c)(b﹣a+c)=ac的充要條件.
故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a∈R,若關(guān)于x的方程x2+x+|a﹣ |+|a|=0有實根,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線x2=ay(a>0)的準(zhǔn)線l與y軸交于點P,若l繞點P以每秒 弧度的角速度按逆時針方向旋轉(zhuǎn)t秒鐘后,恰與拋物線第一次相切,則t等于(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣a|+a.
(Ⅰ)若不等式f(x)≤6的解集為{x|﹣2≤x≤3},求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若存在實數(shù)n使f(n)≤m﹣f(﹣n)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)在區(qū)間上的圖像如圖所示,將該函數(shù)圖像上各點的橫坐標(biāo)縮短到原來的一半(縱坐標(biāo)不變,再向右平移個單位長度后,所得到的圖像關(guān)于直線對稱,則的最小值為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,其中a為實數(shù).
(1)當(dāng) 時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當(dāng)x≥ 時,若關(guān)于x的不等式f(x)≥0恒成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合.

1)若,的概率;

(2)若,的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 求平行于直線3x+4y-12=0,且與它的距離是7的直線的方程;

求垂直于直線x+3y-5="0," 且與點P(-1,0)的距離是的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列,若對于任意數(shù)列滿足,則稱數(shù)列為“數(shù)列”.

(Ⅰ)已知數(shù)列:,是“數(shù)列”,求實數(shù)的取值范圍.

(Ⅱ)是否存在首項為的等差數(shù)列為“數(shù)列”,且前項和滿足,若存在,求出的通項公式,若不存在,請說明理由;

(Ⅲ)已知各項均為正整數(shù)的等比數(shù)列是“數(shù)列”,數(shù)列不是“數(shù)列”,若數(shù)列,試判斷數(shù)列是否“數(shù)列”,并且說明理由.

查看答案和解析>>

同步練習(xí)冊答案