已知為橢圓的兩個焦點,過的直線交橢圓于兩點,,則 (    )
A.B.C.D.
C

試題分析:由橢圓可知.又由橢圓的定義可知,.所以.即,即.所以.故選C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

己知橢圓C:(a>b>0)的右焦點為F(1,0),點A(2,0)在橢圓C上,斜率為1的直線與橢圓C交于不同兩點M,N.
(1)求橢圓C的方程;
(2)設直線過點F(1,0),求線段的長;
(3)若直線過點(m,0),且以為直徑的圓恰過原點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓C:=1(a>b>0)的左焦點為F,C與過原點的直線相交于A,B兩點,連接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=,則C的離心率為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓C=1(a>b>0)的離心率e,右焦點到直線=1的距離d,O為坐標原點.
(1)求橢圓C的方程;
(2)過點O作兩條互相垂直的射線,與橢圓C分別交于A,B兩點,證明,點O到直線AB的距離為定值,并求弦AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的左右焦點為,若存在動點,滿足,且的面積等于,則橢圓離心率的取值范圍是         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖所示,橢圓(>b>0)的離心率e=,左焦點為F,A、B、C為其三個頂點,直線CF與AB交于D點,則tan∠BDC的值等于 (  )

A.3     B.
C.      D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知為橢圓上的一點,,分別為橢圓的上、下頂點,若△的面積為6,則滿足條件的點的個數(shù)為(   )
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線的一條漸近線方程為則橢圓的離心率

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是橢圓的兩個焦點,是過的弦,則的周長是(      )
A.B.C.D.

查看答案和解析>>

同步練習冊答案