【題目】若關于x的不等式xex﹣2ax+a<0的非空解集中無整數(shù)解,則實數(shù)a的取值范圍是(
A.[
B.[ ,
C.[ ,e]
D.[ ,e]

【答案】B
【解析】解:設g(x)=xex , f(x)=2ax﹣a, 由題意可得g(x)=xex在直線f(x)=ax﹣a下方,
g′(x)=(x+1)ex ,
f(x)=2ax﹣a恒過定點( ,0),
設直線與曲線相切于(m,n),
可得2a=(m+1)em , mem=2am﹣a,
消去a,可得2m2﹣m﹣1=0,解得m=1(舍去)或﹣ ,
則切線的斜率為2a=(﹣ +1)e
解得a= ,
又由題設原不等式無整數(shù)解,
由圖象可得當x=﹣1時,g(﹣1)=﹣e1 , f(﹣1)=﹣3a,
由f(﹣1)=g(﹣1),可得a= ,
由直線繞著點( ,0)旋轉(zhuǎn),
可得 ≤a< ,
故選:B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知拋物線x2=2py(p>0)上的點M(m,1)到焦點F的距離為2,
(1)求拋物線的方程;
(2)如圖,點E是拋物線上異于原點的點,拋物線在點E處的切線與x軸相交于點P,直線PF與拋物線相交于A,B兩點,求△EAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線的虛軸長為,兩條漸近線方程為.

(1)求雙曲線的方程;

(2)雙曲線上有兩個點,直線的斜率之積為,判別是否為定值,;

(3)經(jīng)過點的直線且與雙曲線有兩個交點,直線的傾斜角是,是否存在直線(其中)使得恒成立?(其中分別是點的距離)若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某學校高三年級共800名男生中隨機抽取50人測量身高.據(jù)測量,被測學生身高全部介于之間,將測量結果按如下方式分成八組:第一組;第二組;;第八組.如圖是按上述分組方法得到的頻率分布直方圖的一部分.已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構成等差數(shù)列.

1)估計這所學校高三年級全體男生身高在以上(含)的人數(shù);

2)求第六組、第七組的頻率并補充完整頻率分布直方圖;

3)若從身高屬于第六組和第八組的所有男生中隨機抽取兩人,記他們的身高分別為,求滿足的事件的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}的前n項和是Sn , 且Sn+ an=1,數(shù)列{bn},{cn}滿足bn=log3 ,cn= . (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列{cn}的前n項和為Tn , 若不等式Tn<m對任意的正整數(shù)n恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的通項公式為, ),數(shù)列定義如下:對于正整數(shù) 是使得不等式成立的所有中的最小值.

1)若, ,求;

2)若, ,求數(shù)列的前項和公式;

3)是否存在,使得 ?如果存在,求的取值范圍;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED是以BD為直角腰的直角梯形,DE=2BF=2,平面BFED⊥平面ABCD. (Ⅰ)求證:AD⊥平面BFED;
(Ⅱ)在線段EF上是否存在一點P,使得平面PAB與平面ADE所成的銳二面角的余弦值為 .若存在,求出點P的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,方程f2(x)﹣af(x)+b=0(b≠0)有六個不同的實數(shù)解,則3a+b的取值范圍是(
A.[6,11]
B.[3,11]
C.(6,11)
D.(3,11)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,棱長為1(單位:)的正方體木塊經(jīng)過適當切割,得到幾何體,已知幾何體由兩個底面相同的正四棱錐組成,底面平行于正方體的下底面,且各頂點均在正方體的面上,則幾何體體積的取值范圍是________(單位:).

查看答案和解析>>

同步練習冊答案