【題目】已知正數(shù)a、b、c成等比數(shù)列,則下列三數(shù)也成等比數(shù)列的是(
A.lga , lgb , lgc
B.10a , 10b , 10c
C.5lga5lgb5lgc
D.

【答案】C
【解析】解答:假設(shè)a=b=c=1,則lga=lgb=lgc=0,故lga、lgb、lgc不可能成等比數(shù)列.故排除A. 假設(shè)a=2,b=4,c=8,則102 , 104 , 108不成等比數(shù)列,排除B;
也不成等比數(shù)列,排除D,故選C.
分析:可用特殊值法進(jìn)行排除.令a=b=c=1則lga=lgb=lgc=0排除A;令a=2,b=4,c=8,則可排除B,D.對(duì)于選擇題,我們可用特殊值法進(jìn)行排除,可收到事倍功半的效果.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等差關(guān)系的確定(如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),即=d ,(n≥2,n∈N)那么這個(gè)數(shù)列就叫做等差數(shù)列).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱臺(tái)ABC﹣A1B1C1中,D,E分別是AB,AC的中點(diǎn),B1E⊥平面ABC,△AB1C是等邊三角形,AB=2A1B1,AC=2BC,∠ACB=90°.

(1)證明:B1C∥平面A1DE;

(2)求二面角A﹣BB1﹣C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是R上的單調(diào)增函數(shù)且為奇函數(shù),數(shù)列是等差數(shù)列,>0,則的值 ( )
A.恒為正數(shù)
B.恒為負(fù)數(shù)
C.恒為0
D.可正可負(fù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,不等式 的解集為[-1,5]
(1)求實(shí)數(shù) 的值;
(2)若 恒成立,求實(shí)數(shù) 的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)點(diǎn)A(0,1)且斜率為k的直線l與圓C(x2)2(y3)21交于M,N兩點(diǎn).

(1)k的取值范圍;

(2)12,其中O為坐標(biāo)原點(diǎn),求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知P是直線上的動(dòng)點(diǎn),過(guò)點(diǎn)P作圓的兩條切線,A,B是切點(diǎn),C是圓心,若四邊形PACB面積的最小值為2,則的值為(  )

A. 3 B. 2 C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從參加高一年級(jí)期末考試的學(xué)生中抽出40名學(xué)生,將其成績(jī)分成六段[40,50),[50,60)…[90,100]后畫(huà)出如下部分頻率分布直方圖,觀察圖形的信息,回答下列問(wèn)題:

(1)求第四小組的頻率;

(2)估計(jì)這次考試的平均分和中位數(shù)(精確到0.01);

(3)從成績(jī)是40~50分及90~100分的學(xué)生中選兩人,記他們的成績(jī)分別為,求滿足“”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 當(dāng)a1 , d變化時(shí),若8(a4+a6+a8)+(a10+a12+a14+a16)是一個(gè)定值,那么下列各數(shù)中也為定值的是(
A.S7
B.S8
C.S13
D.S15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】集合M={x|2x+1≥0},N={x|x2﹣(a+1)x+a<0},若NM,則( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案