.已知中心在原點O,焦點在軸上,離心率為的橢圓;以橢圓的頂點為頂點構(gòu)成的四邊形的面積為4.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)若A\B分別是橢圓長軸的左.右端點,動點M滿足,直線MA交橢圓于P,求的取值范圍.

 

 

 

 

 

【答案】

 

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知中心在原點O、焦點在x軸上的橢圓C的離心率為
3
2
,點A、B分別是橢圓C的長軸、短軸的端點,點O到直線AB的距離為
6
5
5

(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點E(3,0),設(shè)點P、Q是橢圓C上的兩個動點,滿足EP⊥EQ,求
EP
QP
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知中心在原點O,焦點在x軸上的橢圓E過點(1,
3
2
),離心率為
1
2

(Ⅰ)求橢圓E的方程;
(Ⅱ)直線x+y+1=0與橢圓E相交于A、B(B在A上方)兩點,問是否存在直線l,使l與橢圓相交于C、D(C在D上方)兩點且ABCD為平行四邊形,若存在,求直線l的方程與平行四邊形ABCD的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知中心在原點O,焦點F1、F2在y軸上的橢圓E經(jīng)過點C(2,2),且拋物線x2=4
6
y
的焦點為F2
(Ⅰ) 求橢圓E的方程;
(Ⅱ) 垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與x軸相切時,求直線l的方程和圓P的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知中心在原點O,焦點在x軸上的橢圓E過點(0,1),離心率為
2
2

(I)求橢圓E的方程;
(II)若直線l過橢圓E的左焦點F,且與橢圓E交于A、B兩點,點A關(guān)于x軸的對稱點為C,直線BC與x軸交于點M,當△MAF的面積為
1
2
,求△MAC的內(nèi)切圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知中心在原點O,焦點在x軸上的橢圓E過點(0,1),離心率為
2
2

(I)求橢圓E的方程;
(II)若直線l過橢圓E的左焦點F,且與橢圓E交于A、B兩點,若△OAB的面積為
2
3
,求直線l的方程.

查看答案和解析>>

同步練習冊答案