若函數(shù)y=f(x-1)是偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于


  1. A.
    直線x=-1對稱
  2. B.
    直線x=1對稱
  3. C.
    直線數(shù)學公式對稱
  4. D.
    直線數(shù)學公式對稱
A
分析:函數(shù)y=f(x-1)是偶函數(shù),說明其圖象關(guān)于y軸對稱,而函數(shù)y=f(x)的圖象可由函數(shù)y=f(x-1)的圖象向左平移1個單位得到,故函數(shù)y=f(x)圖象關(guān)于直線x=-1對稱.
解答:函數(shù)y=f(x-1)是偶函數(shù),則其圖象關(guān)于y軸對稱,
而函數(shù)y=f(x)的圖象可由函數(shù)y=f(x-1)的圖象向左平移1個單位得到.
故函數(shù)y=f(x)圖象關(guān)于直線x=-1對稱,
故選A.
點評:本題為函數(shù)圖象的變換,正確運用圖象變換的原則是解決問題的關(guān)鍵,屬基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

命題p:?x∈R,使得3x>x;命題q:若函數(shù)y=f(x-1)為奇函數(shù),則函數(shù)y=f(x)的圖象關(guān)于點(1,0)成中心對稱.( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①函數(shù)f(x)=x|x|+bx+c為奇函數(shù)的充要條件是c=0;
②函數(shù)y=2-x的反函數(shù)是y=-log2x;
③若函數(shù)f(x)=lg(x2+ax-a)的值域是R,則a≤-4或a≥0;
④若函數(shù)y=f(x-1)是偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱.
其中所有正確命題的序號是
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①函數(shù)f(x)=x|x|+bx+c為奇函數(shù)的充要條件是c=0;
②函數(shù)y=
16-4x
的值域是[0,4);
③命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
④若函數(shù)y=f(x-1)是偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=0對稱.
其中所有正確命題的序號是
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①函數(shù)f(x)=x|x|+bx+c為奇函數(shù)的充要條件是c=0;
②函數(shù)y=2-x(x>0)的反函數(shù)是y=-log2x(x>0);
③若函數(shù)f(x)=lg(x2+ax-a)的值域是R,則a≤-4或a≥0;
④若函數(shù)y=f(x-1)是奇函數(shù),則函數(shù)y=f(x)的圖象關(guān)于點(-1,0)對稱.
其中正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出以下三個命題:
①函數(shù)f(x)=x|x|+bx+c為奇函數(shù)的充要條件是c=0;
②若函數(shù)f(x)=lg(x2+ax-a)的值域是R,則a≤-4或a≥0;
③若函數(shù)y=f(x-1)是偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=-1對稱.
其中正確的命題序號是
 

查看答案和解析>>

同步練習冊答案