(12分)已知函數(shù)有極值,且曲線處的切線斜率為3.
(1)求函數(shù)的解析式;
(2)求上的最大值和最小值.

(1) (2)在[-4, 1]上的最大值為13,最小值為-11。

解析試題分析:(1)先求函數(shù)f(x)=x3+ax2+bx+5的導函數(shù),再由x=時,y=f(x)有極值,列一方程,曲線y=f(x)在點f(1)處的切線斜率為3,列一方程,聯(lián)立兩方程即可得a、b值
(2)先求函數(shù)f(x)=x3+ax2+bx+5的導函數(shù),再解不等式得函數(shù)的單調區(qū)間,最后列表列出端點值f(-4),f(1)及極值,通過比較求出y=f(x)在[-4,1]上的最大值和最小值。
解:(1) 
由題意,得  
所以, 
(2)由(1)知,
   


-4
(-4,-2)
-2



1

 
+
0

0
+
 

 

極大值

極小值

 
函數(shù)值
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù) 
(1)若,
①求的值;
的最小值。
(參考數(shù)據(jù)
(2) 當上是單調函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),曲線過點,且在點處的切線斜率為2.
(Ⅰ)求的值;
(Ⅱ)求的極值點;
(Ⅲ)對定義域內任意一個,不等式是否恒成立,若成立,請證明;若不成立,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù) 
(1)求函數(shù)f(x)的極值;
(2)如果當時,不等式恒成立,求實數(shù)k的取值范圍;
(3)求證.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)
(Ⅰ)討論函數(shù)在定義域內的極值點的個數(shù);
(Ⅱ)若函數(shù)處取得極值,對恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)討論的單調性;
(2)設,證明:當時,;
(3)若函數(shù)的圖像與x軸交于A,B兩點,線段AB中點的橫坐標為x0,證明:(x0)<0.(本題滿分14分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知函數(shù)).
①當時,求曲線在點處的切線方程;
②設的兩個極值點,的一個零點.證明:存在實數(shù),使得按某種順序排列后構成等差數(shù)列,并求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù)
(1)當時,求曲線在點處的切線方程;
(2)當時,討論的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(I)求曲線在點處的切線方程;
(II)當時,求函數(shù)的單調區(qū)間.

查看答案和解析>>

同步練習冊答案
<dfn id="sgavt"></dfn>

<bdo id="sgavt"><noscript id="sgavt"><blockquote id="sgavt"></blockquote></noscript></bdo>

  • <style id="sgavt"></style>