【題目】已知拋物線,圓.
(1)若拋物線的焦點(diǎn)在圓上,且為 和圓 的一個(gè)交點(diǎn),求;
(2)若直線與拋物線和圓分別相切于點(diǎn),求的最小值及相應(yīng)的值.
【答案】(1);(2)的最小值為,此時(shí).
【解析】
試題分析:(1)首先求得焦點(diǎn)的坐標(biāo),由此求得拋物線的方程,然后聯(lián)立拋物線與圓的方程求得,最后利用拋物線的定義求得的長(zhǎng);(2)設(shè),由此設(shè)出直線切線的方程,然后根據(jù)求得與的關(guān)系式,從而求得關(guān)于的關(guān)系式,進(jìn)而利用基本不等式求得其最小值,以及的值.
試題解析:(1)由題意得F(1,0),從而有C:x2=4y.
解方程組,得yA=-2,所以|AF|=-1. …5分
(2)設(shè)M(x0,y0),則切線l:y=(x-x0)+y0,
整理得x0x-py-py0=0. …6分
由|ON|=1得|py0|==,
所以p=且y-1>0, …8分
所以|MN|2=|OM|2-1=x+y-1=2py0+y-1
=+y-1=4++(y-1)≥8,當(dāng)且僅當(dāng)y0=時(shí)等號(hào)成立,
所以|MN|的最小值為2,此時(shí)p=. …12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,以為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn),和平面內(nèi)一點(diǎn),過點(diǎn)任作直線與橢圓相交于兩點(diǎn),設(shè)直線的斜率分別為,,試求滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】20名同學(xué)參加某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如下:
(Ⅰ)求頻率分布直方圖中的值;
(Ⅱ)分別求出成績(jī)落在, 中的學(xué)生人數(shù);
(Ⅲ)從成績(jī)?cè)?/span>的學(xué)生中任選2人,求此2人的成績(jī)都在中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且當(dāng)x∈[0,1]時(shí),f(x)=x,則函數(shù)y=f(x)-log3|x|的零點(diǎn)個(gè)數(shù)是( )
A.多于4個(gè) B.4個(gè)
C.3個(gè) D.2個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),在上恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若函數(shù)在上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)是否存在常數(shù),使函數(shù)和函數(shù)在公共定義域上具有相同的單調(diào)性?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校舉行的航天知識(shí)競(jìng)賽中,參與競(jìng)賽的文科生與理科生人數(shù)之比為,且成績(jī)分布在,分?jǐn)?shù)在以上(含)的同學(xué)獲獎(jiǎng). 按文理科用分層抽樣的方法抽取人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖(見下圖).
(1)求的值,并計(jì)算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)填寫下面的列聯(lián)表,能否有超過的把握認(rèn)為“獲獎(jiǎng)與學(xué)生的文理科有關(guān)”?
文科生 | 理科生 | 合計(jì) | |
獲獎(jiǎng) | |||
不獲獎(jiǎng) | |||
合計(jì) |
附表及公式:
,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)若對(duì)任意及任意, ,恒有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究“教學(xué)方式”對(duì)教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺性都一樣).如圖莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績(jī).
(1)現(xiàn)從甲班數(shù)學(xué)成績(jī)不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?7分的同學(xué)至少有一名被抽中的概率;
(2)學(xué)校規(guī)定:成績(jī)不低于75分的為優(yōu)秀,請(qǐng)?zhí)顚?/span>列聯(lián)表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.
甲班 | 乙班 | 合計(jì) | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計(jì) |
參考公式與臨界值表: .
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com