函數(shù)f(x)=
1
log
1
2
(2x+1)
的定義域是(  )
分析:首先由分式的分母不等于0,然后由對數(shù)式的真數(shù)大于0,求出x的取值集合即為原函數(shù)的定義域.
解答:解:要使原函數(shù)有意義,則log
1
2
(2x+1)≠0

即2x+1>0且2x+1≠1.解得:x>-
1
2
且x≠0.
所以原函數(shù)的定義域為(-
1
2
,0)∪(0,+∞).
故選B.
點評:本題考查了對數(shù)函數(shù)的定義域,解答的關鍵是保證對數(shù)式的真數(shù)大于0,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
ax
,(a∈R).
(1)當a=2時,求函數(shù)p(x)=f(x)+g(x)的單調(diào)區(qū)間;
(2)若函數(shù)h(x)=f(x)-g(x)在[1,e]上的最小值為3,求a的值;
(3)若存在x0∈[1,+∞),使得f(x0)>x02+g(x0)能成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=alnx-bx2圖象上一點P(2,f(2))處的切線方程為y=-3x+2ln2+2.
(Ⅰ)求a,b的值;
(Ⅱ)若方程f(x)+m=0在[
1e
,e]
內(nèi)有兩個不等實根,求m的取值范圍(其中e為自然對數(shù)的底數(shù));
(Ⅲ)令g(x)=f(x)-kx,若g(x)的圖象與x軸交于A(x1,0),B(x2,0)(其中x1<x2),AB的中點為C(x0,0),求證:g(x)在x0處的導數(shù)g′(x0)≠0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)滿足f(0)=1,f(x+1)=
3
2
+f(x) (x∈R),則數(shù)列{f(n)}的前20項和為( 。
A、305B、315
C、325D、335

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-
22x+1
是奇函數(shù)(a∈R).
(Ⅰ)求實數(shù)a的值;
(Ⅱ)試判斷函數(shù)f(x)在(-∞,+∞)上的單調(diào)性,并證明你的結論;
(Ⅲ)若對任意的t∈R,不等式f(t2-(m-2)t)+f(t2-m-1)<0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)對任意實數(shù)x、y滿足f(x+y)+f(x-y)=2f(x)cosy,且f(0)=0,f(
π
2
)=1
.給出下列結論:f(
π
4
)=
1
2
;②f(x)為奇函數(shù);③f(x)為周期函數(shù);④f(x)在(0,x)內(nèi)單調(diào)遞減.其中正確的結論序號是( 。
A、②③B、②④C、①③D、①④

查看答案和解析>>

同步練習冊答案