下列說法錯誤的是( 。
A、已知命題p為“?x∈[0,+∞),(log32)x≤1”,則¬p是真命題
B、若p∨q為假命題,則p、q均為假命題
C、x>2是x>1充分不必要條件
D、“全等三角形的面積相等”的否命題是假命題
考點:命題的真假判斷與應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用,簡易邏輯
分析:根據(jù)對數(shù)函數(shù)和指數(shù)函數(shù)的圖象和性質(zhì),可判斷A;根據(jù)復(fù)合命題真假判斷的真值表,可判斷B;根據(jù)充要條件的定義,可判斷C;寫出原命題的否命題,可判斷D.
解答: 解:對于A,命題p為“?x∈[0,+∞),(log32)x≤1”是真命題,則¬p是假命題,故錯誤;
對于B,若p∨q為假命題,則p、q均為假命題,故正確;
對于C,x>2時,x>1成立,x>1時,x>2不一定成立,故x>2是x>1充分不必要條件,故正確;
對于D,“全等三角形的面積相等”的否命題是“不全等三角形的面積不相等”為假命題,故正確;
故說法錯誤的是A,
故選:A
點評:本題以命題的真假判斷為載體考查了指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性,四種命題,充要條件等知識點,難度中檔.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的三邊長分別為a,b,c,已知a=3,c=2,B=120°.
(1)求邊b的長;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-2x-3<0},B={x|x>1},則A∩B=( 。
A、(1,+∞)
B、(-∞,3)
C、(1,3)
D、(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐的底面邊長為6,斜高為3,則此三棱錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

各項均為正數(shù)的數(shù)列{an}中,Sn是數(shù)列{an}的前n項和,且2Sn=an2+an,
(1)求數(shù)列{an}的通項公式;
(2)設(shè)c為實數(shù),如果對任意的正整數(shù)n,不等式
an+2
-
an
c
an+2
恒成立,求證:c的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
25
+
y2
9
=1的右焦點為F,過F作與坐標(biāo)軸不垂直的直線l,交橢圓于A、B兩點,線段AB的中垂線l′交x軸于點M.
(1)若BF=2,求B點坐標(biāo);
(2)問:
AB
FM
是否為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓錐曲線E:
(x-c)2+y2
+
(x+c)2+y2
=4c(c為正常數(shù),過原點O的直線與曲線E交于P、A兩點,其中P在第一象限,B是曲線E上不同于P,A的點,直線PB,AB的斜率分別為k1,k2,且k1k2≠0.
(Ⅰ)若P點坐標(biāo)為(1,
3
2
),求圓錐曲線E的標(biāo)準方程;
(Ⅱ)求k1•k2的值;
(Ⅲ)若PD⊥x軸于點D,D點坐標(biāo)為(m,0),存在μ∈R使
AD
BD
,且直線AB與直線l:x=
4c2
m
交于點M,記直線PA、PM的斜率分別為k3,k4,問是否存在常數(shù)λ,使k1+k3=λk4,若存在,求出λ的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=xln(x+1)在區(qū)間(k-1,k)上不是單調(diào)函數(shù),則實數(shù)k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若(2b-c)cosA=acosC,則A=( 。
A、30°B、45°
C、60°D、120°

查看答案和解析>>

同步練習(xí)冊答案