如圖,在△ABC中,∠C=90°,BE是角平分線,DE⊥BE交AB于D,圓O是△BDE的外接圓.

(1)求證:AC是圓O的切線;
(2)如果AD=6,AE=6,求BC的長.
(1)見解析(2)4
(1)證明:連OE,∵BE⊥DE,
∴O點為BD的中點.
∵OB=OE,∴∠OEB=∠OBE.
∵∠OEC=∠OEB+∠CEB=∠OBE+∠CEB=∠CEB+∠CBE=90°,即OE⊥AC.
又E是AC與圓O的公共點,∴AC是圓O的切線.
(2)解:∵AE是圓的切線,∴∠AED=∠ABE.
又∠A共用,∴△ADE∽△AEB,
,即,解得AB=12,
∴圓O的半徑為3.
又∵OE∥BC,∴,即,解得BC=4.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,圓O的直徑AB的延長線與弦CD的延長線相交于點P,E為圓O上一點,AE=AC,求證:∠PDE=∠POC.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如下圖,點D在⊙O的弦AB上移動,AB=4,連接OD,過點D作OD的垂線交⊙O于點C,則CD的最大值為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,點D在⊙O的弦AB上移動,AB=4,連接OD,過點D作OD的垂線交⊙O于點C,則CD的最大值為         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,AB是圓O的直徑,點C在圓O上,延長BC到D使BC=CD,過C作圓O的切線交AD于E.若AB=6,ED=2,求BC的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB>·AD,E為AD的中點,連結EC,作EF⊥EC,且EF交AB于F,連結FC.設=k,是否存在實數(shù)k,使△AEF、△ECF、△DCE與△BCF都相似?若存在,給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖所示,PC與圓O相切于點C,直線PO交圓O于A,B兩點,弦CD垂直AB于E,則下面結論中,錯誤的結論是(  )
A.△BEC∽△DEA
B.∠ACE=∠ACP
C.DE2=OE·EP
D.PC2=PA·AB

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知A(2,1),B(3,2),C(-1,4),則△ABC是(  )
A.直角三角形
B.銳角三角形
C.鈍角三角形
D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖, AB與CD相交于點E, 過E作BC的平行線與AD的延長線相交于點P. 已知, PD =" 2DA" =" 2," 則PE =       .

查看答案和解析>>

同步練習冊答案