精英家教網 > 高中數學 > 題目詳情

【題目】某公司生產一種電子儀器的固定成本為20000元,每生產一臺儀器需增加投入100元,已知總收益滿足函數: ,其中是儀器的月產量.(注:總收益=總成本+利潤)

(1)將利潤表示為月產量的函數;

(2)當月產量為何值時,公司所獲利潤最大?最大利潤為多少元?

【答案】(1);;(2)月產量為300臺時,公司所獲利潤最大,最大利潤是25000元

【解析】

(1)根據利潤=收益-成本,由已知分兩段當時,和當時,求出利潤函數的解析式;

(2)根據分段函數的表達式,分別求出函數的最大值即可得到結論.

(1)由于月產量為臺,則總成本為,

從而利潤;

(2)當時,,

所以當時,有最大值25000;

時,是減函數,

所以當時,有最大值25000,

即當月產量為300臺時,公司所獲利潤最大,最大利潤是25000元.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,設橢圓 + =1(a>b>0)的左右焦點分別為F1 , F2 , 點D在橢圓上,DF1⊥F1F2 , =2 ,△DF1F2的面積為 . (Ⅰ)求該橢圓的標準方程;
(Ⅱ)是否存在圓心在y軸上的圓,使圓在x軸的上方與橢圓有兩個交點,且圓在這兩個交點處的兩條切線互相垂直并分別過不同的焦點?若存在,求出圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=(x2﹣2ax)lnx+2ax﹣ x2 , 其中a∈R.
(1)若a=0,且曲線f(x)在x=t處的切線l過原點,求直線l的方程;
(2)求f(x)的極值;
(3)若函數f(x)有兩個極值點x1 , x2(x1<x2),證明f(x1)+f(x2)< a2+3a.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,如果輸入的a=﹣1,則輸出的S=( )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的圖象在點處的切線為,也為函數的圖象的切線,必須滿足

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a>0,b>0,a3+b3=2,證明:
(Ⅰ)(a+b)(a5+b5)≥4;
(Ⅱ)a+b≤2.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法錯誤的是( )

A. 在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

B. 在線性回歸分析中,回歸直線不一定過樣本點的中心

C. 在回歸分析中, 為0.98的模型比為0.80的模型擬合的效果好

D. 自變量取值一定時,因變量的取值帶有一定隨機性的兩個變量之間的關系叫做相關關系

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有甲、乙兩個盒子,甲盒子中有8張卡片,其中2張寫有數字0,3張寫有數字1,3張寫有數字2;乙盒子中有8張卡片,其中3張寫有數字0,2張寫有數字1,3張寫有數字2.

(1)如果從甲盒子中取2張卡片,從乙盒中取1張卡片,那么取出的3張卡片都寫有1的概率是多少?

(2)如果從甲、乙兩個盒子中各取1張卡片,設取出的兩張卡片數字之和為X,求X的概率分布.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC的內角A、B、C的對邊分別為a、b、c,且3bcos A=ccos A+acosC.
(1)求tanA的值;
(2)若a=4 ,求△ABC的面積的最大值.

查看答案和解析>>

同步練習冊答案