若實數(shù)x、y滿足
2x+y-2≥0
y≤3
ax-y-a≤0
,且x2+y2的最大值等于34,則正實數(shù)a的值等于( 。
A、
1
2
B、
3
4
C、
4
3
D、3
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用x2+y2的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域,
x2+y2的幾何意義表示為點(x,y)到原點(0,0)的距離的平方,
∵圖象可知,可行域中的點B(
3+a
a
,3)離(0,0)最遠(yuǎn),
故x2+y2的最大值為B(
3+a
a
2+32=34,
解得a=
3
4
或a=-
3
4
(負(fù)值舍去),
故選:B
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用x2+y2的幾何意義結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1的傾斜角為45°,若直線l2⊥l1且l2在y軸上的截距為-1,求直線l2的方程并畫出直線l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)y=Asin(ωx+φ)x∈R在區(qū)間[-
π
6
6
]上的圖象,為了得到這個函數(shù)的圖象,只要將y=cos(x-
π
2
),(x∈R)的圖象上所有的點( 。
A、向左平移
π
6
個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
B、向左平移
π
6
個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的
1
2
倍,縱坐標(biāo)不變
C、向左平移
π
3
個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
D、向左平移
π
3
個單位長度,再把所得各點的橫 坐標(biāo)縮短到原來的
1
2
倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解某校教師使用多媒體輔助教學(xué)的情況,采用簡單隨機(jī)抽樣的方法,從該校200名授課教師中抽取20名教師,調(diào)查了解他們上學(xué)期使用多媒體輔助教學(xué)的次數(shù),結(jié)果用莖葉圖表示(如圖),據(jù)此可估計該校上學(xué)期200名教師中,使用多媒體輔助教學(xué)不少于30次的教師人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個等比數(shù)列中,S4=15,S6=63,求S10的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x+3x-7的零點所在的區(qū)間為( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是定義域在(0,+∞)上的減函數(shù),且對一切A,B∈(0,+∞),都有f(
a
b
)=f(a)-f(b)
(1)求f(1)的值
(2)若f(4)=1,解不等式f(x+6)-f(
1
x
)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集為U=R,集合M={x|3a-1<x<2a,a∈R},N={x|-1<x<3}
(1)若a=0,求M∩N;
(2)若N⊆∁UM,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=3,b=5,sinA=
1
5
,則sinB=( 。
A、±
1
3
B、
2
2
3
C、
1
3
D、±
2
2
3

查看答案和解析>>

同步練習(xí)冊答案