考點(diǎn):分段函數(shù)的應(yīng)用
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)分段函數(shù)的表達(dá)式判斷函數(shù)的單調(diào)性,根據(jù)函數(shù)的單調(diào)性將不等式進(jìn)行轉(zhuǎn)化即可得到結(jié)論.
解答:
解:當(dāng)x∈[-1,0)時(shí),函數(shù)f(x)=sin
x單調(diào)遞增,且f(x)∈[-1,0),
當(dāng)x∈[0,+∞)時(shí),函數(shù)f(x)=ax
2+ax+1的對(duì)稱(chēng)軸為x=-
,此時(shí)函數(shù)f(x)單調(diào)遞增且f(x)≥1,
綜上當(dāng)x∈[-1,+∞)時(shí),函數(shù)單調(diào)遞增,
由f(x)=sin
x=
-得
x=
-,解得x=
-,
則不等式f(t-
)>-
,等價(jià)為f(t-
)>f(-
),
∵函數(shù)f(x)是增函數(shù),
∴t-
>-
,
即t>0,
故答案為:(0,+∞)
點(diǎn)評(píng):本題主要考查不等式的求解,根據(jù)條件判斷分段函數(shù)的單調(diào)性是解決本題的關(guān)鍵.