分析 (Ⅰ)設(shè)點P的坐標(biāo)為(x,y),利用平面向量的坐標(biāo)表示和共線定理,列出方程求出sinα、cosα的關(guān)系,即得tanα的值;
(Ⅱ)利用三角函數(shù)的恒等變換和同角的三角函數(shù)關(guān)系,化簡并求值即可.
解答 解:(Ⅰ)設(shè)點P的坐標(biāo)為(x,y),
則$\overrightarrow{AB}$=(cosα-sinα,-1),$\overrightarrow{BP}$=(x-cosα,y);
∵$\overrightarrow{AB}$=$\overrightarrow{BP}$,
∴x=2cosα-sinα,y=1;
∴點P的坐標(biāo)為(2cosα-sinα,-1); …..(3分)
由O、P、C三點共線知:$\overrightarrow{OP}$∥$\overrightarrow{OC}$,
∴(-1)×(-sinα)=2×(2cosα-sinα),
∴tanα=$\frac{4}{3}$,…..(6分)
(Ⅱ)$\frac{sin2α+sinα}{{2cos2α+2{{sin}^2}α+cosα}}$+sin2α
=$\frac{2sinα•cosα+sinα}{{2({{cos}^2}α-{{sin}^2}α)+2{{sin}^2}α+cosα}}+sin2α$…..(7分)
=$\frac{sinα(2cosα+1)}{cosα(2cosα+1)}+\frac{2sinα•cosα•}{{{{sin}^2}α+{{cos}^2}α}}$…..(9分)
=$tanα+\frac{2tanα}{{1+{{tan}^2}α}}$…..(10分)
=$\frac{4}{3}$+$\frac{2×\frac{4}{3}}{1{+(\frac{4}{3})}^{2}}$
=$\frac{172}{75}$.…..(12分)
點評 本題考查了平面向量的坐標(biāo)表示與共線定理的應(yīng)用問題,也考查了三角恒等變換和同角的三角函數(shù)關(guān)系的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≤1 | B. | -$\frac{1}{3}$≤a≤1 | C. | a>1 | D. | a≥-$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 540種 | B. | 270種 | C. | 180種 | D. | 90種 |
查看答案和解析>>
科目:解答題
來源: 題型:查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com