14.已知f(x)=$\frac{lgx}{x}$,求f′(1)=$\frac{1}{ln10}$.

分析 利用導(dǎo)數(shù)的運算法則即可得出.

解答 解:f′(x)=$\frac{\frac{1}{xln10}×x-lgx}{{x}^{2}}$=$\frac{\frac{1}{ln10}-lgx}{{x}^{2}}$,
∴f′(1)=$\frac{1}{ln10}$.
故答案為:$\frac{1}{ln10}$.

點評 本題考查了導(dǎo)數(shù)的運算法則,考查了推理能力與運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知O為坐標(biāo)原點,$\overrightarrow{OA}$=(2cosx,$\sqrt{3}$),$\overrightarrow{OB}$=(sinx+$\sqrt{3}$cosx,-1),若f(x)=$\overrightarrow{OA}$•$\overrightarrow{OB}$+2.
(1)求函數(shù)f(x)的對稱軸方程;
(2)當(dāng)$x∈(0,\frac{π}{2})$時,若函數(shù)g(x)=f(x)+m有零點,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)k∈R,函數(shù)f(x)=lnx-kx.
(1)若k=2,求曲線y=f(x)在P(1,-2)處的切線方程;
(2)若f(x)無零點,求實數(shù)k的取值范圍;
(3)若f(x)有兩個相異零點x1,x2,求證:lnx1+lnx2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx-ax(a∈R)有兩個不同的零點.
(Ⅰ)求a的取值范圍;
(Ⅱ)記兩個零點分別為x1,x2,且x1<x2,已知λ>0,若不等式1+λ<lnx1+λlnx2恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{kx+3,x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$,若方程f(f(x))-2=0恰有三個實數(shù)根,則實數(shù)k的取值范圍是(  )
A.[0,+∞)B.[1,3]C.(-1,-$\frac{1}{3}$]D.[-1,-$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)集合M={(x,y)|y=x2},N={(x,y)|y=2x},則集合M∩N的子集的個數(shù)為8個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.意大利數(shù)學(xué)家列昂那多•斐波那契以兔子繁殖為例,引入“兔子數(shù)列”:1,1,2,3,5,8,13,21,34,55,89,144,233,…,即F(1)=F(2)=1,F(xiàn)(n)=F(n-1)+F(n-2)(n≥3,n∈N*),此數(shù)列在現(xiàn)代物理、準(zhǔn)晶體結(jié)構(gòu)、化學(xué)等領(lǐng)域都有著廣泛的應(yīng)用,若此數(shù)列被3整除后的余數(shù)構(gòu)成一個新數(shù)列{bn},b2017=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.曲線y=x${\;}^{\frac{1}{2}}$與y=x2所圍成的封閉區(qū)域的面積為(  )
A.$\frac{1}{3}$B.$\frac{5}{12}$C.$\frac{4}{5}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知拋物線y2=4x上一點P到焦點F的距離為5,則△PFO的面積為2.

查看答案和解析>>

同步練習(xí)冊答案