15.?dāng)?shù)列1,37,314,321,…中,398是這個(gè)數(shù)列的( 。
A.第15項(xiàng)B.第14項(xiàng)C.第13項(xiàng)D.不在此數(shù)列中

分析 推導(dǎo)出an=37n-7,由此能求出結(jié)果.

解答 解:數(shù)列1,37,314,321,…中,
an=37n-7,
由7n-7=98,得n=15,
∴398是這個(gè)數(shù)列的第15項(xiàng).
故選:A.

點(diǎn)評(píng) 本題考查一個(gè)數(shù)是等差數(shù)列的第幾項(xiàng)的判斷與求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.過(guò)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點(diǎn)F(-c,0)(c>0),作圓x2+y2=$\frac{a^2}{4}$的切線,切點(diǎn)為E,延長(zhǎng)FE交雙曲線右支于點(diǎn)P,若$\overrightarrow{OP}=2\overrightarrow{OE}-\overrightarrow{OF}$,則雙曲線的離心率為(  )
A.$\sqrt{10}$B.$\frac{{\sqrt{10}}}{2}$C.$\frac{{\sqrt{10}}}{5}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)f(x)=xex+f′(0),則曲線y=f(x)在x=1處的切線方程是y=2ex-e+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{a-1}{2}$x2+ax+a(a∈R)的導(dǎo)數(shù)為f'(x),若對(duì)任意的x∈[2,3]都有f'(x)≤f(x),則a的取值范圍是( 。
A.$[{\frac{2}{3},+∞})$B.$[{1,\frac{5}{3}}]$C.$[{\frac{1}{3},+∞})$D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知命題p:?x∈R,ax2+2ax+1≤0.若命題¬p是真命題,則實(shí)數(shù)a的取值范圍是[0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.通過(guò)隨機(jī)詢問某校110名高中學(xué)生在購(gòu)買食物時(shí)是否看營(yíng)養(yǎng)說(shuō)明,得到如下列聯(lián)表:
 總計(jì)
看營(yíng)養(yǎng)說(shuō)明503080
不看營(yíng)養(yǎng)說(shuō)明102030
總計(jì)6050110
(1)從這50名女生中按是否看營(yíng)養(yǎng)說(shuō)明分層抽樣,抽取一個(gè)容量為5的樣本,問樣本中看與不看營(yíng)養(yǎng)說(shuō)明的女生各有多少名?
(2)從(1)中的5名女生中隨機(jī)選取2名進(jìn)行深度訪談,求選到看與不看營(yíng)養(yǎng)說(shuō)明的女生各1名的概率;
(3)根據(jù)以上列聯(lián)表,問能否在犯錯(cuò)誤的概率不超過(guò)0.010的前提下認(rèn)為“性別與在購(gòu)買食物時(shí)看營(yíng)養(yǎng)說(shuō)明有關(guān)系”?
參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)$f(x)=\frac{{\sqrt{x+1}}}{x}$則函數(shù)的定義域?yàn)閧x|x≥-1且x≠0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知$\overrightarrow a=(3,2),\overrightarrow b=(0,-1)$,則$-2\overrightarrow a+3\overrightarrow b$的坐標(biāo)是( 。
A.(-6,7)B.(-6,-7)C.(-6,1)D.(-6,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若函數(shù)$f(x)=\left\{\begin{array}{l}{e^{1-x}},x≤1\\ ln({x-1}),x>1\end{array}\right.$,則使得f(x)≥2成立的x的取值范圍是(-∞,1-ln2]∪[1+e2,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案