函數(shù)f(x)=5+ax-1恒過(guò)點(diǎn)P,則點(diǎn)P的坐標(biāo)為   
【答案】分析:根據(jù)解析式令x=1使得指數(shù)為零,再求出對(duì)應(yīng)的函數(shù)值.
解答:解:令x=1,代入f(x)=5+ax-1得,f(1)=6,
∴點(diǎn)P的坐標(biāo)為(1,6).
故答案為:(1,6).
點(diǎn)評(píng):本題考查了指數(shù)函數(shù)圖象過(guò)定點(diǎn)(0,1)的應(yīng)用,即令自變量為一個(gè)特殊值,使得指數(shù)為零再由解析式求出函數(shù)值即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)的圖象與直線(xiàn)x=a,x=b及x軸所圍成圖形的面積稱(chēng)為函數(shù)f(x)在[a,b]上的面積.已知函數(shù)y=sinnx在[0,
π
n
]
上的面積為
2
n
(n∈N*)
,則函數(shù)y=cos3x在[0,
6
]
上的面積為
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•長(zhǎng)春模擬)選修4-5;不等式選講
已知函數(shù)f(x)=|2x-a|+a.
(1)若不等式f(x)≤6的解集為{x|-2≤x≤3},求實(shí)數(shù)a的值;
(2)在(1)的條件下,若存在實(shí)數(shù)n使f(n)≤m-f(-n)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鄭州二模)選修4一5:不等式選講
設(shè)函數(shù)f(x)=|2x-a|+5x,其中a>0.
(Ⅰ)當(dāng)a=3時(shí),求不等式f(x)≥5x+1的解集;
(Ⅱ)若不等式f(x)≤0的解集為{x|x≤-1},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•成都一模)已知函數(shù)f(x)在[a,b]上連續(xù),定義
f1(x)=f(t)min,x∈[a,b],a≤t≤x
f2(x)=f(t)max,x∈[a,b],a≤t≤x
;其中f(x)min(x∈D)表示f(x)在D上的最小值,f(x)max(x∈D)表示f(x)在D上的最大值.若存在最小正整數(shù)k使得f2(x)-f1(x)≤k(x-a)對(duì)任意的x∈[a,b]成立,則稱(chēng)函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.有下列命題:
①若f(x)=cosx,x∈[0,π],則f1(x)=1,x∈[0,π];
②若f(x)=2x,x∈[-1,4],則f2(x)=2x,x∈[-1,4]
③f(x)=x為[1,2]上的1階收縮函數(shù);
④f(x)=x2為[1,4]上的5階收縮函數(shù).
其中你認(rèn)為正確的所有命題的序號(hào)為
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在D上的函數(shù)f(x),如果滿(mǎn)足:對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱(chēng)f(x)是D上的有界函數(shù),其中M稱(chēng)為函數(shù)f(x)的上界.
舉例:f(x)=x,D=[-3,2],則對(duì)任意x∈D,|f(x)|≤3,根據(jù)上述定義,f(x)=x在[-3,2]上為有界函數(shù),上界可取3,5等等.
已知函數(shù)f(x)=1+a•2x+4x,g(x)=
1-2x1+2x

(1)當(dāng)a=1時(shí),求函數(shù)f(x)在(0,+∞)上的值域,并判斷函數(shù)f(x)在(0,+∞)上是否為有界函數(shù),請(qǐng)說(shuō)明理由;
(2)求函數(shù)g(x)在[0,1]上的上界T的取值范圍;
(3)若函數(shù)f(x)在(-∞,0]上是以3為上界的函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案