精英家教網 > 高中數學 > 題目詳情

f(x)=x2+2(a-1)x+2,在區(qū)間(-∞,4)為遞減,求a的取值范圍


  1. A.
    a≥-3
  2. B.
    a≤-3
  3. C.
    a≤3
  4. D.
    a≥3
B
分析:由題意可得函數的對稱軸為x=1-a,只需1-a≥4,解之即可.
解答:由題意,函數的對稱軸是x=-=1-a,
∵函數f(x)=x2+2(a-1)x+2在區(qū)間(-∞,4)上遞減,
∴1-a≥4,解得a≤-3
故選B
點評:本題考查二次函數的性質,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(任選一題)
①已知函數f(x)=x2-2,g(x)=xlnx,
(1)若對一切x∈(0,+∞),2g(x)≥ax-5-f(x)恒成立,求實數a的取值范圍;
(2)試判斷方程ln(1+x2)-
12
f(x)-k=0
有幾個實根.
②已知f′(x)為f(x)的導函數,且定義在R上,對任意的x都有2f(x)+xf′(x)>x2,試證明f(x)>0.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x),若存在x0∈R,使得f(x0)=x0,則稱x0為函數f(x)的不動點,
(1)設f(x)=x2-2,求函數f(x)的不動點;
(2)設f(x)=ax2+bx-b,若對任意實數b,函數f(x)都有兩個相異的不動點,求實數a的取值范圍;
(3)若奇函數f(x)(x∈R)存在K個不動點,求證:K為奇數.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=x2-2|x|-1(-3≤x≤3)
(1)證明f(x)是偶函數;
(2)指出函數f(x)的單調增區(qū)間;
(3)求函數的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=x2-2|x|-3的最小值為
-4
-4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-2|x|-1(-3≤x≤3).
(1)證明函數f(x)是偶函數;
(2)畫出這個函數的圖象;
(3)根據函數的圖象,指出函數f(x)的單調區(qū)間,并說出在各個區(qū)間上f(x)的單調性;
(4)求函數f(x)的值域.

查看答案和解析>>

同步練習冊答案