(本小題滿分12分)
已知,其中向量, (R).
(1) 求的最小正周期和最小值;
(2) 在△ABC中,角A、B、C的對邊分別為、、,若,a=2,,求邊長的值.
(1) f(x)的最小正周期為π,最小值為-2.(2) c=2或c=6。
解析試題分析:(1) f(x)=a·b-1=(sin2x,2cosx)·(,cosx)-1
=sin2 x +2cos2 x -1=sin2x+cos2x=2sin(2x+) 4分
∴f(x)的最小正周期為π,最小值為-2. 6分
(2) f()=2sin(+)=
∴sin(+)= 8分
∴+=∴ A=或 (舍去) 10分
由余弦定理得a2=b2+c2-2bccosA
52=64+c2-8c即c2-8c+12="0"
從而c=2或c=6 12分
考點:本題主要考查平面向量的坐標運算,三角函數(shù)和差倍半公式,三角函數(shù)性質(zhì),余弦定理的應(yīng)用。
點評:典型題,為研究三角函數(shù)的圖象和性質(zhì),往往需要利用三角函數(shù)和差倍半公式將函數(shù)“化一”。本題由平面向量的坐標運算得到f(x)的表達式,通過“化一”,利用三角函數(shù)性質(zhì),求得周期、最小值。(2)則利用余弦定理,得到c的方程,達到解題目的。
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)
已知函數(shù),其中請分別解答以下兩小題.
(Ⅰ)若函數(shù)過點,求函數(shù)的解析式.
(Ⅱ)如圖,點分別是函數(shù)的圖像在軸兩側(cè)與軸的兩個相鄰交點, 函數(shù)圖像上的一點,若滿足,求函數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(8分)已知函數(shù).
(1)寫出它的振幅、周期、頻率和初相;
(2)求這個函數(shù)的單調(diào)遞減區(qū)間;
(3)求出使這個函數(shù)取得最大值時,自變量的取值集合,并寫出最大值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com