8.對大于或等于2的自然數(shù)m的n次方冪有如下分解式:22=1+3,32=1+3+5,42=1+3+5+7;23=3+5,33=7+9+11,43=13+15+17+19.
根據(jù)上述分解規(guī)律52=1+3+5+7+9,則53的分解中最大的數(shù)是29.

分析 由由23=3+5,33=7+9+11,43=13+15+17+19,可得53=21+23+25+27+29,問題得以解決

解答 解:由23=3+5,33=7+9+11,43=13+15+17+19,
可得53=21+23+25+27+29,
故53的分解中最大的數(shù)是29,
故答案為29

點(diǎn)評 本題考查歸納推理,求解的關(guān)鍵是根據(jù)歸納推理的原理歸納出結(jié)論,其中分析出分解式中項(xiàng)數(shù)及每個(gè)式子中各數(shù)據(jù)之間的變化規(guī)律是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知E(2,2)是拋物線C:y2=2px上一點(diǎn),經(jīng)過點(diǎn)D(2,0)的直線l與拋物線C交于A,B兩點(diǎn)(不同于點(diǎn)E),直線EA,EB分別交直線x=-2于點(diǎn)M,N
(1)求拋物線方程及其焦點(diǎn)坐標(biāo),準(zhǔn)線方程;
(2)已知O為原點(diǎn),求證:∠MON為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.角α的終邊在第三象限,那么$\frac{α}{3}$的終邊不可能在的象限是第( 。┫笙蓿
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在Rt△ABC中,∠C=90°,AC=4,則$\overrightarrow{AB}$•$\overrightarrow{CA}$等于(  )
A.-16B.-8C.16D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.因?yàn)橹笖?shù)函數(shù)y=ax是增函數(shù),而y=($\frac{1}{2}$)x是指數(shù)函數(shù),所以y=($\frac{1}{2}$)x是增函數(shù)關(guān)于上面推理正確的說法是(  )
A.推理的形式錯(cuò)誤B.大前提是錯(cuò)誤的C.小前提是錯(cuò)誤的D.結(jié)論是正確的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某商場對甲、乙兩種品牌的牛奶進(jìn)行為期100天的營銷活動(dòng),為調(diào)查這100天的日銷售情況,用簡單隨機(jī)抽樣抽取10天進(jìn)行統(tǒng)計(jì),以它們的銷售數(shù)量(單位:件)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖.已知該樣本中,甲品牌牛奶銷量的平均數(shù)為48件,乙品牌牛奶銷量的中位數(shù)為43件,將日銷量不低于50件的日期稱為“暢銷日”.
(1)求出x,y的值;
(2)以10天的銷量為樣本,估計(jì)100天的銷量,請完成這兩種品牌100天銷量的2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為品牌與“暢銷日”天數(shù)相關(guān).
暢銷日天數(shù)非暢銷日天數(shù)合計(jì)
5050100              
3070100
合計(jì)80120200
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$(其中n=a+b+c+d為樣本容量)
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.獨(dú)立性檢驗(yàn)中,假設(shè)H0:變量X與變量Y沒有關(guān)系,則在H0成立的情況下,P(K2≥6.635)≈0.010表示的意義是(  )
A.變量X與變量Y有關(guān)系的概率為1%
B.變量X與變量Y有關(guān)系的概率為99.9%
C.變量X與變量Y沒有關(guān)系的概率為99%
D.變量X與變量Y有關(guān)系的概率為99%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若橢圓$\frac{x^2}{36}+\frac{y^2}{16}=1$上一點(diǎn)P與橢圓的兩個(gè)焦點(diǎn)F1、F2的連線互相垂直,則△PF1F2的面積為( 。
A.36B.16C.20D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某班級50名學(xué)生的考試分?jǐn)?shù)x分布在區(qū)間[50,100)內(nèi),設(shè)考試分?jǐn)?shù)x的分布頻率是f(x),且$f(x)=\left\{\begin{array}{l}\frac{n}{10}-0.4,10n≤x<10({n+1}),n=5,6,7\\-\frac{n}{5}+b,10n≤x<10({n+1}),n=8,9.\end{array}\right.$
(1)求b的值;
(2)并估計(jì)班級的考試平均分?jǐn)?shù);
(3)考試成績采用“5分制”,規(guī)定:考試分?jǐn)?shù)在[50,60)內(nèi)的成績記為1分,考試分?jǐn)?shù)在[60,70)內(nèi)的成績記為2分,考試分?jǐn)?shù)在[70,80)內(nèi)的成績記為3分,考試分?jǐn)?shù)在[80,90)內(nèi)的成績記為4分,考試分?jǐn)?shù)在[90,100)內(nèi)的成績記為5分,在50名學(xué)生中用分層抽樣的方法,從成績?yōu)?分,2分,3分的學(xué)生中隨機(jī)抽取6人,再從這6人中抽出2人,記這2人的成績之和為4的概率(將頻率視為概率).

查看答案和解析>>

同步練習(xí)冊答案