13.甲、乙兩人從4門課程中各選修2門,則甲、乙所選的課程中恰有1門相同的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

分析 先求所有兩人各選修2門的種數(shù),再求兩人所選兩門都相同與都不同的種數(shù),作差可得甲、乙所選的課程中恰有1門相同的種數(shù),根據(jù)概率公式計算即可.

解答 解:由題意可得,所有兩人各選修2門的種數(shù)C42C42=36,兩人所選兩門都相同的有為C42=6種,都不同的種數(shù)為C42=6,
故只恰好有1門相同的選法有36-6-6=24種.
故甲、乙所選的課程中恰有1門相同的概率$\frac{24}{36}$=$\frac{2}{3}$
故選:C

點評 本題考查組合公式的運用和古典概率的問題,解題時注意事件之間的關(guān)系,選用間接法是解決本題的關(guān)鍵,屬中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=|ln|x-1||+x2與g(x)=2x有n個交點,它們的橫坐標(biāo)之和為( 。
A.0B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)=3sin(2x+θ)(0<θ<π)是偶函數(shù),則f(x)在[0,π]上的遞增區(qū)間是( 。
A.[0,$\frac{π}{2}$]B.[$\frac{π}{2}$,π]C.[$\frac{π}{4}$,$\frac{π}{2}$]D.[$\frac{3π}{4}$,π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.將一枚硬幣連擲三次,出現(xiàn)“三個正面”的概率為$\frac{1}{8}$;出現(xiàn)“一個正面,兩個反面”的概率為$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)數(shù)列{an}的前n項和為Sn,且有a1=1,2Sn=(n+1)an,n∈N*
(1)求an
(2)求數(shù)列{$\frac{1}{{S}_{n}}$}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知一個正四棱柱的高為8cm,底面邊長為6cm,以它的兩個底面的中心連線為軸,鉆一個半徑為1cm的圓柱體的孔.(1)求這個正四棱柱去掉圓柱體的孔后剩余部分的表面積.(精確到0.01cm2
(2)求這個正四棱柱去掉圓柱體的孔后剩余部分的體積.(精確到0.01cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=xetx-ex+1,其中t∈R,e是自然對數(shù)的底數(shù).
(Ⅰ)若方程f(x)=1無實數(shù)根,求實數(shù)t的取值范圍;
(Ⅱ)若函數(shù)f(x)在(0,+∞)內(nèi)為減函數(shù),求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.n件產(chǎn)品中有m件正品,現(xiàn)從中先后任取2件(第一次取出的產(chǎn)品不放回),令“第一次取到正品”為A,“第二次取到正品”為B,則P(B|A)=$\frac{m-1}{n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ln(x+1)+ax2-x(a>0).
(1)若a=$\frac{1}{2}$,求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)討論函數(shù)y=f(x)的單調(diào)性;
(3)若存在x0∈[0,+∞),使f(x0)<0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案