如右圖,扇形OAB的半徑為1,中心角60°,四邊形PQRS是扇形的內(nèi)接矩形,當(dāng)其面積最大時,求點P的位置,并求此最大面積.

P的中點,P(),最大面積是


解析:

OAx  O為原點,建立平面直角坐標(biāo)系,

并設(shè)P的坐標(biāo)為(cosθ,sinθ),則

PS|=sinθ  直線OB的方程為y=x,直線PQ的方程為y=sinθ  聯(lián)立解之得Q(sinθ;sinθ),所以|PQ|=cosθsinθ 

于是SPQRS=sinθ(cosθsinθ)

=(sinθcosθ-sin2θ)=(sin2θ)

=(sin2θ+cos2θ)= sin(2θ+)- 

∵0<θ,∴<2θ+π  ∴<sin(2θ+)≤1 

∴sin(2θ+)=1時,PQRS面積最大,且最大面積是

此時,θ=,點P的中點,P().

練習(xí)冊系列答案
相關(guān)習(xí)題

同步練習(xí)冊答案