【題目】已知拋物線上一點(diǎn)到焦點(diǎn)的距離,傾斜角
為的直線經(jīng)過焦點(diǎn),且與拋物線交于、兩點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程及準(zhǔn)線的方程;
(2)若為銳角,作線段的垂直平分線交軸于點(diǎn),證明為定值,并求此定值.
【答案】(1)標(biāo)準(zhǔn)方程為,準(zhǔn)線l的方程為.(2)4
【解析】試題分析:(1)先利用焦半徑公式和點(diǎn)在拋物線上求出拋物線的方程,進(jìn)而寫出其準(zhǔn)線方程;(2)設(shè)出直線方程,聯(lián)立直線和拋物線的方程,得到關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系、焦半徑公式進(jìn)行求解.
試題解析:(1) ∴在拋物線上,∴
,得拋物線的標(biāo)準(zhǔn)方程為,從而所求準(zhǔn)線l的方程為.
(2)設(shè), ,直線AB的斜率為
,則直線AB方程為.
將此式代入,得,
故.
記直線m與AB的交點(diǎn)為,則, , 故直線m的方程為.
令y=0,得P的橫坐標(biāo),
故.
故.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個袋中裝有個形狀大小完全相同的小球,球的編號分別為,,,,,.
(Ⅰ)若從袋中每次隨機(jī)抽取個球,有放回的抽取次,求取出的兩個球編號之和為的概率.
(Ⅱ)若從袋中每次隨機(jī)抽取個球,有放回的抽取次,求恰有次抽到號球的概率.
(Ⅲ)若一次從袋中隨機(jī)抽取個球,記球的最大編號為,求隨機(jī)變量的分布列.
(Ⅳ)若從袋中每次隨機(jī)抽取個球,有放回的抽取次,記球的最大編號為,求隨機(jī)變量的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二年級設(shè)計了一個實(shí)驗學(xué)科的能力考查方案:考生從6道備選題中一次性隨機(jī)抽取3道題,并獨(dú)立完成所抽取的3道題.規(guī)定:至少正確完成其中2道題的便可通過該學(xué)科的能力考查.已知6道備選題中考生甲能正確完成其中4道題,另2道題不能完成;考生乙正確完成每道題的概率都為.
(Ⅰ)分別求考生甲、乙能通過該實(shí)驗學(xué)科能力考查的概率;
(Ⅱ)記所抽取的3道題中,考生甲能正確完成的題數(shù)為,寫出的概率分布列,并求及.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,曲線上任意一點(diǎn)滿足;曲線上的點(diǎn)在軸的右邊且到的距離與它到軸的距離的差為1.
(1)求的方程;
(2)過的直線與相交于點(diǎn),直線分別與相交于點(diǎn)和.求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某縣城出租車的收費(fèi)標(biāo)準(zhǔn)是:起步價是元(乘車不超過千米);行駛千米后,每千米車費(fèi)1.2元;行駛千米后,每千米車費(fèi)1.8元.
(1)寫出車費(fèi)與路程的關(guān)系式;
(2)一顧客計劃行程千米,為了省錢,他設(shè)計了三種乘車方案:
①不換車:乘一輛出租車行千米;
②分兩段乘車:先乘一輛車行千米,換乘另一輛車再行千米;
③分三段乘車:每乘千米換一次車.
問哪一種方案最省錢.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為加快新能源汽車產(chǎn)業(yè)發(fā)展,推進(jìn)節(jié)能減排,國家鼓勵消費(fèi)者購買新能源汽車.某校研究性學(xué)習(xí)小組從汽車市場上隨機(jī)選取了M輛純電動乘用車.根據(jù)其續(xù)駛里程R(單次充電后能行駛的最大里程)作出了頻率與頻數(shù)的統(tǒng)計表:
分組 | 頻數(shù) | 頻率 |
80≤R<150 | 10 | |
150≤R<250 | 30 | x |
R≥250 | y | z |
合計 | M | 1 |
(1)求x,y,z,M的值;
(2)若用分層抽樣的方法從這M輛純電動乘用車中抽取一個容量為6的樣本,從該樣本中任選2輛,求選到的2輛車?yán)m(xù)駛里程為150≤R<250的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)的動直線與拋物線: 相交于, 兩點(diǎn).當(dāng)直線的斜率是時, .
(1)求拋物線的方程;
(2)設(shè)線段的中垂線在軸上的截距為,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com