某個(gè)公園有個(gè)池塘,其形狀為直角△ABC,∠C=90°,AB=200米,BC=100米.現(xiàn)在準(zhǔn)備新建造一個(gè)荷塘,分別在AB,BC,CA上取點(diǎn)D,E,F(xiàn),建造△DEF連廊(不考慮寬度)供游客休憩,且使△DEF為正三角形,設(shè)求△DEF邊長(zhǎng)的最小值.
考點(diǎn):解三角形的實(shí)際應(yīng)用
專題:應(yīng)用題,解三角形
分析:設(shè)正三角形DEF的邊長(zhǎng)為a、∠CEF=α且∠EDB=∠1,將CF和AF用a、α表示出,再用α分別分別表示出∠1和∠ADF,然后利用正弦定理表示a并結(jié)合輔角公式化簡(jiǎn),利用正弦函數(shù)的值域即可求得a的最小值.
解答: 解:設(shè)正△DEF的邊長(zhǎng)為a,∠CEF=α
則CF=a•sinα,AF=
3
-a•sinα
設(shè)∠EDB=∠1,可得
∠1=180°-∠B-∠DEB=120°-∠DEB,α=180°-60°-∠DEB=120°-∠DEB
∴∠ADF=180°-60°-∠1=120°-α
在△ADF中,
a
sin30°
=
3
-asinα
sin∠ADF
,
化簡(jiǎn)得a[2sin(120°-α)+sinα]=
3

∴a=
3
2sinα+
3
cosα
=
3
7
sin(α+φ)
21
7
(其中φ是滿足tanφ=
3
2
的銳角)
∴△DEF邊長(zhǎng)最小值為
21
7
點(diǎn)評(píng):本題著重考查了解直角三角形、正弦定理和三角恒等變換等知識(shí),考查了在實(shí)際問題中建立三角函數(shù)模型能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=14,3an=3an+1+2,則使anan+2<0成立的n值是( 。
A、21B、22C、23D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
3-bi
1-2i
(i是虛數(shù)單位)的實(shí)部和虛部相等,則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+bx+c(b,c∈R),g(x)=4-x-m•(2-x)-9(m∈R),A={x|f(x)=x-2}.
(1)若A={1},解不等式f(x)>1;
(2)若b∈Z,-3∈A,x1,x2為方程f(x)=0的兩個(gè)實(shí)根,且
4
x1
+
1
x2
=-
1
2

①求b,c的值
②若對(duì)任意的t1∈[-2,2],總存在t2∈[-2,2],使得f(t1)=g(t2)成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩條不同的直線m,n和兩個(gè)不同的平面α,β,以下四個(gè)結(jié)論中正確的個(gè)數(shù)為( 。
①若m∥α,n∥β,且α∥β,則m∥n;  
②若m∥α,n⊥β,且α⊥β,則m∥n;
③若m⊥α,n∥β,且α∥β,則m⊥n; 
④若m⊥α,n⊥β,且α⊥β,則m⊥n.
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:x2=y,圓C2:x2+(y-4)2=1.
(1)在拋物線C1上取點(diǎn)M,C2的圓周取一點(diǎn)N,求|MN|的最小值;
(2)設(shè)P(x0,y0)(2≤x0≤4)為拋物線C1上的動(dòng)點(diǎn),過P作圓C2的兩條切線,交拋物線C1于A,B兩點(diǎn).求AB的中點(diǎn)D的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=cos2x-
3
2
sin2x,若α∈(
π
4
,
π
2
)且滿足f(α)=
1
2
-
3
2
,求tan2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試比較下列各式的大。ú粚戇^程)
(1)1-
2
2
-
3

(2)
2
-
3
3
-
4

通過上式請(qǐng)你推測(cè)出
n-1
-
n
n
-
n+1
(n≥2
且n∈N)的大小,并用分析法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四棱錐(底面是正方形,頂點(diǎn)在底面的射影是底面的中心)的底面邊長(zhǎng)為a,側(cè)棱長(zhǎng)為
2
a
(1)求它的外接球的體積
(2)求他的內(nèi)切球的表面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案