【題目】設l,m,n為三條不同的直線,α為一個平面,下列命題中正確的個數(shù)是( )
①若l⊥α,則l與α相交
②若mα,nα,l⊥m,l⊥n,則l⊥α
③若l∥m,m∥n,l⊥α,則n⊥α
④若l∥m,m⊥α,n⊥α,則l∥n.
A.1
B.2
C.3
D.4

【答案】C
【解析】解:由于直線與平面垂直是相交的特殊情況,故命題①正確;
由于不能確定直線m,n的相交,不符合線面垂直的判定定理,命題②不正確;
根據(jù)平行線的傳遞性.l∥n,故l⊥α時,一定有n⊥α.即③正確;
由垂直于同一平面的兩直線平行得m∥n,再根據(jù)平行線的傳遞性,即可得l∥n.即④正確.
故正確的有①③④共3個.
故選 C
【考點精析】根據(jù)題目的已知條件,利用空間中直線與平面之間的位置關系的相關知識可以得到問題的答案,需要掌握直線在平面內(nèi)—有無數(shù)個公共點;直線與平面相交—有且只有一個公共點;直線在平面平行—沒有公共點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】a、b、c為三條不重合的直線,α、β、γ為三個不重合平面,現(xiàn)給出六個命題.

ac,bcab;②aγ,bγab;

αcβcαβ;④αγ,βγαβ;

αc,acαa;⑥aγ,αγαa.

其中正確的命題是(  )

A. ①②③ B. ①④⑤ C. ①④ D. ①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列關于幾何概型的說法中,錯誤的是(  )

A. 幾何概型是古典概型的一種,基本事件都具有等可能性

B. 幾何概型中事件發(fā)生的概率與它的位置或形狀無關

C. 幾何概型在一次試驗中可能出現(xiàn)的結果有無限多個

D. 幾何概型中每個結果的發(fā)生都具有等可能性

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},集合M真子集的個數(shù)為(
A.32
B.31
C.16
D.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln(1+x2),則滿足不等式f(2x-1)<f(3)的x的取值范圍是( )

A.(-∞,2) B.(-2,2)

C.(-1,2) D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】123(8)________(16)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各進制數(shù)中,最小的是(  )

A. 1 002(3) B. 210(6)

C. 1 000(4) D. 111 111(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=lg|x|( )

A.是偶函數(shù),在區(qū)間(-∞,0)上單調(diào)遞增

B.是偶函數(shù),在區(qū)間(-∞,0)上單調(diào)遞減

C.是奇函數(shù),在區(qū)間(0,+∞)上單調(diào)遞增

D.是奇函數(shù),在區(qū)間(0,+∞)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從裝有5個紅球和3個白球的口袋內(nèi)任取3個球,那么互斥而不對立的事件是(  )
A.至少有一個紅球與都是紅球
B.至少有一個紅球與都是白球
C.至少有一個紅球與至少有一個白球
D.恰有一個紅球與恰有二個紅球

查看答案和解析>>

同步練習冊答案