16.過拋物線y2=4x的焦點(diǎn)F的直線交該拋物線于A,B(A在第一象限) 兩點(diǎn),O為坐標(biāo)原點(diǎn),若△AOB的面積為$2\sqrt{2}$,則$\frac{{|{AF}|}}{{|{BF}|}}$的值為( 。
A.$2±\sqrt{2}$B.$3±2\sqrt{2}$C.$4±2\sqrt{3}$D.$4±2\sqrt{2}$

分析 求出拋物線的焦點(diǎn),設(shè)直線l為x=my+1,代入拋物線方程,運(yùn)用韋達(dá)定理和向量的坐標(biāo)表示,解得m,再由三角形的面積公式,計(jì)算即可得到.

解答 解:拋物線y2=4x的焦點(diǎn)為(1,0),
設(shè)直線l為x=my+1,代入拋物線方程可得y2-4my-4=0,
設(shè)A(x1,y1),B(x2,y2),
則y1+y2=4m,y1y2=-4,
設(shè)$\overline{AF}$=t$\overrightarrow{FB}$,可得y1=-ty2,
由代入法,可得y1=-$\frac{4mt}{1-t}$,y2=$\frac{4m}{1-t}$,m2=$\frac{(1-t)^{2}}{4t}$
∵△AOB的面積為$2\sqrt{2}$,
∴$\frac{1}{2}•1•$|-$\frac{4mt}{1-t}$-$\frac{4m}{1-t}$|=$2\sqrt{2}$,
化簡可得t2-6t+1=0,
∴t=3±2$\sqrt{2}$,
故選:B.

點(diǎn)評(píng) 本題考查直線和拋物線的位置關(guān)系的綜合應(yīng)用,主要考查韋達(dá)定理和向量的共線的坐標(biāo)表示,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(文)試卷(解析版) 題型:解答題

已知復(fù)數(shù).試求實(shí)數(shù)分別為什么值時(shí),分別為:(1)實(shí)數(shù);(2)虛數(shù);(3)純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知一幾何體的三視圖如圖所示,則該幾何體的體積為4;表面積為12+3$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某高校在2015年的自主招生考試中隨機(jī)抽取了100名學(xué)生的筆試成績,按成績分組:第一組[160,165),第二組[165,170),第三組[170,175),第四組[175,180),第五組[180,185)得到的頻率分布直方圖如圖所示
(Ⅰ)根據(jù)頻率分布直方圖計(jì)算出樣本數(shù)據(jù)的眾數(shù)和中位數(shù);(結(jié)果保留1位小數(shù))
(Ⅱ)為了能選拔出最優(yōu)秀的學(xué)生,學(xué)校決定在筆試成績高的第三、四、五組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第三、四、五組每組各抽取多少名學(xué)生進(jìn)入第二輪面試.
( III)在(Ⅱ)的前提下,學(xué)校決定在這6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第四組至少有一名學(xué)生被甲考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,等腰直角三角形ABC中,∠BAC=90°,D為BC的中點(diǎn),BE平分∠ABC,AD與BE交于點(diǎn)P,若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,則λ等于( 。
A.$\frac{1}{2}$B.$\sqrt{2}$-1C.$\frac{\sqrt{2}-1}{2}$D.$\frac{2-\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知各項(xiàng)為正數(shù)的等差數(shù)列{an}的前n項(xiàng)和為Sn,a1=3,a2•a3=S5
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{{S_n}-n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距為2,點(diǎn)Q($\frac{a^2}{{\sqrt{{a^2}-{b^2}}}}$,0)在直線l:x=2上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若O為坐標(biāo)原點(diǎn),P為直線l上一動(dòng)點(diǎn),過點(diǎn)P作直線l′與橢圓相切于點(diǎn)A,求△POA面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)求經(jīng)過A(-1,2)且與直線2x-3y+4=0垂直的直線l的方程;
(2)求經(jīng)過A(5,2),B(3,-2)且圓心在直線2x-y-3=0上的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.?dāng)?shù)據(jù)x1,x2,…xn的平均數(shù)為$\overline{x}$,方差為S2,則數(shù)據(jù)3x1-1,3x2-1,…3xn-1的方差是(  )
A.S2B.3S2C.9S2D.9S2-6S+1

查看答案和解析>>

同步練習(xí)冊答案