A. | $2±\sqrt{2}$ | B. | $3±2\sqrt{2}$ | C. | $4±2\sqrt{3}$ | D. | $4±2\sqrt{2}$ |
分析 求出拋物線的焦點(diǎn),設(shè)直線l為x=my+1,代入拋物線方程,運(yùn)用韋達(dá)定理和向量的坐標(biāo)表示,解得m,再由三角形的面積公式,計(jì)算即可得到.
解答 解:拋物線y2=4x的焦點(diǎn)為(1,0),
設(shè)直線l為x=my+1,代入拋物線方程可得y2-4my-4=0,
設(shè)A(x1,y1),B(x2,y2),
則y1+y2=4m,y1y2=-4,
設(shè)$\overline{AF}$=t$\overrightarrow{FB}$,可得y1=-ty2,
由代入法,可得y1=-$\frac{4mt}{1-t}$,y2=$\frac{4m}{1-t}$,m2=$\frac{(1-t)^{2}}{4t}$
∵△AOB的面積為$2\sqrt{2}$,
∴$\frac{1}{2}•1•$|-$\frac{4mt}{1-t}$-$\frac{4m}{1-t}$|=$2\sqrt{2}$,
化簡可得t2-6t+1=0,
∴t=3±2$\sqrt{2}$,
故選:B.
點(diǎn)評(píng) 本題考查直線和拋物線的位置關(guān)系的綜合應(yīng)用,主要考查韋達(dá)定理和向量的共線的坐標(biāo)表示,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(文)試卷(解析版) 題型:解答題
已知復(fù)數(shù).試求實(shí)數(shù)分別為什么值時(shí),分別為:(1)實(shí)數(shù);(2)虛數(shù);(3)純虛數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\sqrt{2}$-1 | C. | $\frac{\sqrt{2}-1}{2}$ | D. | $\frac{2-\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | S2 | B. | 3S2 | C. | 9S2 | D. | 9S2-6S+1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com