精英家教網 > 高中數學 > 題目詳情

(海南寧夏卷理21)設函數,曲線在點處的切線方程為。

(1)求的解析式;

(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心;

(3)證明:曲線上任一點處的切線與直線和直線所圍三角形的面積為定值,并求出此定值。

【試題解析】(Ⅰ),

于是

解得

,故

    (II)證明:已知函數都是奇函數,

所以函數也是奇函數,其圖像是以原點為中心的中心對稱圖形。

而函數。

可知,函數的圖像按向量a=(1,1)平移,即得到函數的圖象,故函數的圖像是以點(1,1)為中心的中心對稱圖形。

(III)證明:在曲線上任一點.

知,過此點的切線方程為.

,切線與直線交點為.

,切線與直線交點為.

直線與直線的交點為(1,1).

從而所圍三角形的面積為.

所以, 所圍三角形的面積為定值2.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(海南寧夏卷理21)設函數,曲線在點處的切線方程為。

(1)求的解析式;

(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心;

(3)證明:曲線上任一點處的切線與直線和直線所圍三角形的面積為定值,并求出此定值。

查看答案和解析>>

同步練習冊答案