精英家教網 > 高中數學 > 題目詳情

過點A(2,-1)作曲線y=x3+x2-2x的切線,則切線方程為________

答案:
解析:

x+y=1或x+4y+2=0或31x-y-63=0


練習冊系列答案
相關習題

科目:高中數學 來源:浙江省紹興一中2011-2012學年高二下學期期末考試數學文科試題 題型:044

過點A(3,-1)作直線l交x軸于點B,交直線l1:y=2x于點C,若|BC|=2|AB|,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源:2007-2008學年度三亞市第一中學第一學期高二數學期末考試(理) 題型:044

過點P(2,-1)作直線L交橢圓于A,B兩點,且P為AB的中點,求直線L的方程.

查看答案和解析>>

科目:高中數學 來源:重慶市重慶八中2011屆高三第七次月考數學文科試題 題型:044

已知函數f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(Ⅰ)求f(x)的解析式;

(Ⅱ)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年河北省高三8月月考理科數學試卷(解析版) 題型:解答題

已知函數f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數m的取值范圍.

【解析】本試題主要考查了導數在研究函數中的運用。第一問,利用函數f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數求導數,判定單調性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設切點為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過點A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調遞減,(0,2)單調遞增,(2,+∞)單調遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

同步練習冊答案