16.已知函數(shù)f(x)=lnx+x2-2ax+1,g(x)=ex+x2-2ax+1,(a為常數(shù)).
(Ⅰ)討論函數(shù)f(x)的單調性;
(Ⅱ)證明:|f(x)-g(x)|>2.

分析 (1)求出導數(shù),$f'(x)=\frac{1}{x}+2x-2a=\frac{{2{x^2}-2ax+1}}{x}$(x>0),再討論g(x)=2x2-2ax+1的取值情況即可;
(Ⅱ)|f(x)-g(x)|=|lnx-ex|=ex-lnx,只需F(X)=ex-lnx,$F'(x)={e^x}-\frac{1}{x}$,$F''(x)={e^x}+\frac{1}{x^2}>0$的最小值大于2即可.

解答 (本小題滿分12分)
解:(Ⅰ)$f'(x)=\frac{1}{x}+2x-2a=\frac{{2{x^2}-2ax+1}}{x}$(x>0),記g(x)=2x2-2ax+1…(1分)
①當a≤0時,因為x>0,所以g(x)>1>0,函數(shù)f(x)在(0,+∞)上單調遞增;…(2分)
②當$0<a≤\sqrt{2}$時,因為△=4(a2-2)≤0,所以g(x)≥0,函數(shù)f(x)在(0,+∞)上單調遞增;…(3分)
③當$a>\sqrt{2}$時,由$\left\{\begin{array}{l}x>0\\ g(x)>0\end{array}\right.$,解得$x∈(\frac{{a-\sqrt{{a^2}-2}}}{2},\frac{{a+\sqrt{{a^2}-2}}}{2})$,
所以函數(shù)f(x)在區(qū)間$(\frac{{a-\sqrt{{a^2}-2}}}{2},\frac{{a+\sqrt{{a^2}-2}}}{2})$上單調遞減,
在區(qū)間$(0,\frac{{a-\sqrt{{a^2}-2}}}{2}),(\frac{{a+\sqrt{{a^2}-2}}}{2},+∞)$上單調遞增.…(5分)
(2)f(x)與g(x)的公共定義域為(0,+∞),|f(x)-g(x)|=|lnx-ex|=ex-lnx,
令F(X)=ex-lnx,$F'(x)={e^x}-\frac{1}{x}$,$F''(x)={e^x}+\frac{1}{x^2}>0$,所以F'(x)單調遞增
因為$F'(\frac{1}{2})=\sqrt{e}-2<0,F(xiàn)'(1)=e-1>0$,
所以存在唯一${x_0}∈({\frac{1}{2},1})$使得$F'({x_0})={e^{x_0}}-\frac{1}{x_0}=0$,∴${x_0}={e^{-{x_0}}}$
且當x∈(0,x0)時F'(x)<0,F(xiàn)(x)遞減; 當x∈(x0,+∞)時F'(x)>0,F(xiàn)(x)當遞增;
所以${F_{min}}(x)=F({x_0})={e^{x_0}}-ln{x_0}={e^{x_0}}+{x_0}>{e^{\frac{1}{2}}}+\frac{1}{2}>1.6+\frac{1}{2}>2$故|f(x)-g(x)|>2.…(12分)

點評 本題考查了利用導數(shù)處理函數(shù)單調性問題,及函數(shù)不等式恒成立的證明,轉化思想是關鍵,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知$f(x)=sin[\frac{π}{3}(x+1)]-\sqrt{3}cos[\frac{π}{3}(x+1)]$,則f(1)+f(2)+f(3)+…+f(2013)=( 。
A.-$\sqrt{3}$B.$\sqrt{3}$C.-2$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知向量$\overrightarrow{a}$與向量$\overrightarrow$的夾角為120°,若向量$\overrightarrow{c}=\overrightarrow{a}+\overrightarrow$,且$\overrightarrow{a}⊥\overrightarrow{c}$,則$\frac{|\overrightarrow{a}|}{|\overrightarrow|}$的值為( 。
A.$\frac{1}{2}$B.$\frac{2\sqrt{3}}{3}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,斜三棱柱ABC-A1B1C1的所有棱長均為a,M是BC的中點,側面B1C1CB⊥底面ABC,且AC1⊥BC.
(Ⅰ)求證:BC⊥C1M;
(Ⅱ)求二面角A1-AB-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設函數(shù)f'(x)是奇函數(shù)f(x)(x∈R)的導函數(shù),f(-1)=0,當x>0時,xf′(x)-f(x)<0,$g(x)=\frac{f(x)}{x}(x≠0)$
(Ⅰ)判斷函數(shù)g(x)的奇偶性;
(Ⅱ)證明函數(shù)g(x)在(0,+∞)上為減函數(shù);
(Ⅲ)求不等式f(x)>0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx-a(x-1),g(x)=ex,其中e為自然對數(shù)的底數(shù).
(Ⅰ)設$t(x)=\frac{1}{x}g(x),x∈(0,+∞)$,求函數(shù)t(x)在[m,m+1](m>0)上的最小值;
(Ⅱ)過原點分別作曲線y=f(x)與y=g(x)的切線l1,l2,已知兩切線的斜率互為倒數(shù),
求證:a=0或$\frac{e-1}{e}<a<\frac{{{e^2}-1}}{e}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設f(x)=ax2-bx+6lnx+15,其中a∈R,曲線y=f(x)在x=1和x=6處的切線都與直線$y=-\frac{1}{2}x+3$垂直.
(1)確定a,b的值;
(2)求函數(shù)f(x)的單調區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,點F是拋物線C:x2=2y的焦點,點P(x1,y1)為拋物線上的動點(P在第一象限),直線PF交拋物線C于另一點Q,直線l與拋物線C相切于點P.過點P作直線l的垂線交拋物線C于點R.
(1)求直線l的方程(用x1表示);
(2)求△PQR面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知數(shù)列{an}的前n項和Sn=$\frac{3}{2}$n2-$\frac{n}{2}$,bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,Tn為{bn}的前n項和,若對任意的n∈N,不等式λTn<n+12(-1)n恒成立,則實數(shù)λ的取值范圍為(-∞,-44).

查看答案和解析>>

同步練習冊答案