已知函數(shù),數(shù)列滿足:,證明:
證明:,所以為增函數(shù),下證
1)顯然成立;2)假設(shè)成立,即
所以,所以也成立,由1)和2)
所以。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,)上單調(diào)遞減,在(,上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的減區(qū)間是
⑴試求m、n的值;
⑵求過點(diǎn)且與曲線相切的切線方程;
⑶過點(diǎn)A(1,t)是否存在與曲線相切的3條切線,若存在求實(shí)數(shù)t的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù)為實(shí)常數(shù)).
(I)當(dāng)時(shí),求函數(shù)上的最小值;
(Ⅱ)若方程(其中)在區(qū)間上有解,求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題12分)某造船公司年造船量是20艘,已知造船艘的產(chǎn)值函數(shù)為
(單位:萬元),成本函數(shù)為(單位:萬元),又在經(jīng)濟(jì)學(xué)中,函數(shù)的邊際函數(shù)定義為
(Ⅰ)求利潤函數(shù)及邊際利潤函數(shù);(提示:利潤=產(chǎn)值-成本)
(Ⅱ)問年造船量安排多少艘時(shí),可使公司造船的年利潤最大?
(Ⅲ)求邊際利潤函數(shù)單調(diào)遞減時(shí)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

不等式恒成立,則的最小值為             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點(diǎn)Q(1,0)且與曲線y=切線的方程是(  )
A.y=-2x+2B.y=-x+1C.y=-4x+4D.y=-4x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)是R上的單調(diào)函數(shù),則實(shí)數(shù)m的取值范圍是(  
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則當(dāng)取最大值時(shí),=_____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案