設(shè)集合P={3,log2a},Q={a,b},若P∩Q={0},則P∪Q=( 。
A、{3,0}
B、{3,1,0}
C、{3,2,0}
D、{3,2,1,0}
考點(diǎn):并集及其運(yùn)算
專題:集合
分析:由P∩Q={0}求出a的值,再根據(jù)題意求出b的值,然后由并集運(yùn)算直接得答案.
解答: 解:∵P∩Q={0},
∴l(xiāng)og2a=0即a=1.
∴Q={a,b}={1,0}.
則P∪Q={3,log2a}∪{a,b}={3,1}∪{1,0}={3,1,0}.
故選:B.
點(diǎn)評(píng):本題考查了并集及其運(yùn)算,考查了對(duì)數(shù)的運(yùn)算,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|x2-3x≤10},N={x|a+1≤x≤2a+1}.
(1)若a=2,求M∩(CRN);
(2)若M∪N=M,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高校高三文科學(xué)生的一次數(shù)學(xué)周考成績(jī)繪制了如右圖的頻率分布直方圖,其中成績(jī)?cè)赱40,80]內(nèi)的學(xué)生有210人,則該校高三文科學(xué)生共有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-|x+a|+1
(1)求函數(shù)的奇偶性;
(2)求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)p:實(shí)數(shù)x滿足x2-4ax+3a2<0,其中a≠0,q:2<x≤3.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“中華人民共和國(guó)個(gè)人所得稅法”第六條規(guī)定,公民全月工資,薪金所得不超過(guò)3500元的部分不必納稅,超過(guò)3500元的部分為全月應(yīng)納稅所得額,此項(xiàng)稅款按下表分段累計(jì)計(jì)算:
全月應(yīng)納稅所得額稅率
不超過(guò)1500元部分3%
超過(guò)1500不超過(guò)4500元部分10%
超過(guò)4500元至9000元部分20%
超過(guò)9000元至35000元部分25%
某人今年一月份應(yīng)納此項(xiàng)稅款為403元,那么他當(dāng)月工資的工資,薪金所得為( 。
A、8290元
B、7765元
C、7540元
D、6790元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1-
4
2ax+a
(a>0,a≠1)且f(0)=0.
(Ⅰ)求a的值;
(Ⅱ)若函數(shù)g(x)=(2x+1)•f(x)+k有零點(diǎn),求實(shí)數(shù)k的取值范圍.
(Ⅲ)當(dāng)x∈(0,1)時(shí),f(x)>m•2x-2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn)分別是F1、F2,過(guò)點(diǎn)F2的直線交雙曲線右支于不同的兩點(diǎn)M、N.若△MNF1為正三角形,則該雙曲線的離心率為( 。
A、
6
B、
3
C、
2
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將一個(gè)棱長(zhǎng)為4cm的立方體表面涂上紅色后,再均勻分割成棱長(zhǎng)為1cm的小正方體.從涂有紅色面的小正方體中隨機(jī)取出一個(gè)小正方體,則這個(gè)小正方體表面的紅色面積不少于2cm2的概率是( 。
A、
4
7
B、
1
2
C、
3
7
D、
1
7

查看答案和解析>>

同步練習(xí)冊(cè)答案