精英家教網 > 高中數學 > 題目詳情

【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.

1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;

2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對理科題的概率均為,答對文科題的概率均為,若每題答對得10分,否則得零分.現該生已抽到三道題(兩理一文),求其所得總分的分布列與數學期望

【答案】1;

2的分布列為











【解析】

試題分析:(1)利用條件概率公式,即可求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;

2)確定的可能取值,利用概率公式即可得到總分的分布列,代入期望公式即可.

試題解析:(1)記該考生在第一次抽到理科題為事件,該考生第二次和第三次均抽到文科題為事件,則

該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率為

2的可能取值為:0,10,2030,

,,

,

的分布列為











的數學期望為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知正數數列的前項和為,且滿足;在數列中,

(1)求數列的通項公式;

(2)設,數列的前項和為. 若對任意,存在實數,使恒成立,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=mln(x+1),g(x)= (x>﹣1). (Ⅰ)討論函數F(x)=f(x)﹣g(x)在(﹣1,+∞)上的單調性;
(Ⅱ)若y=f(x)與y=g(x)的圖象有且僅有一條公切線,試求實數m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數的反函數為,則函數的圖象可能是  

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018年6月14日,第二十一屆世界杯足球賽將在俄羅斯拉開帷幕.為了了解喜愛足球運動是否與性別有關,某體育臺隨機抽取100名觀眾進行統(tǒng)計,得到如下列聯(lián)表.

(1)將列聯(lián)表補充完整,并判斷能否在犯錯誤的概率不超過0.001的前提下認為喜愛足球運動與性別有關?

(2)在不喜愛足球運動的觀眾中,按性別分別用分層抽樣的方式抽取6人,再從這6人中隨機抽取2人參加一臺訪談節(jié)目,求這2人至少有一位男性的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為調查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調查了500位老年人,結果如下:

需要

40

30

不需要

160

270

(1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例。

(2)能否在犯錯誤的概率不超過百分之一的前提下認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關?

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司按現有能力,每月收入為70萬元,公司分析部門測算,若不進行改革,入世后因競爭加劇收入將逐月減少.分析測算得入世第一個月收入將減少3萬元,以后逐月多減少2萬元,如果進行改革,即投入技術改造300萬元,且入世后每月再投入1萬元進行員工培訓,則測算得自入世后第一個月起累計收入與時間(以月為單位)的關系為,且入世第一個月時收入將為90萬元,第二個月時累計收入為170萬元,問入世后經過幾個月,該公司改革后的累計純收入高于不改革時的累計純收入.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校高一(1)(2)兩個班聯(lián)合開展“詩詞大會進校園,國學經典潤心田”古詩詞競賽主題班會活動,主持人從這兩個班分別隨機選出20名同學進行當場測試,他們的測試成績按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)分組,分別用頻率分布直方圖與莖葉圖統(tǒng)計如圖(單位:分):
高一(2)班20名學生成績莖葉圖:

4

5

5

2

6

4 5 6 8

7

0 5 5 8 8 8 8 9

8

0 0 5 5

9

4 5

(Ⅰ)分別計算兩個班這20名同學的測試成績在[80,90)的頻率,并補全頻率分布直方圖;
(Ⅱ)分別從兩個班隨機選取1人,設這兩人中成績在[80,90)的人數為X,求X的分布列(頻率當作概率使用).
(Ⅲ)運用所學統(tǒng)計知識分析比較兩個班學生的古詩詞水平.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2016年入冬以來,各地霧霾天氣頻發(fā),頻頻爆表(是指直徑小于或等于2.5微米的顆粒物),各地對機動車更是出臺了各類限行措施,為分析研究車流量與的濃度是否相關,某市現采集周一到周五某一時間段車流量與的數據如下表:

時間

周一

周二

周三

周四

周五

車流量(萬輛)

50

51

54

57

58

的濃度(微克/立方米)

69

70

74

78

79

(1)請根據上述數據,在下面給出的坐標系中畫出散點圖;

(2)試判斷是否具有線性關系,若有請求出關于的線性回歸方程,若沒有,請說明理由;

(3)若周六同一時間段的車流量為60萬輛,試根據(2)得出的結論,預報該時間段的的濃度(保留整數).

參考公式: .

查看答案和解析>>

同步練習冊答案