在平面幾何中有如下結(jié)論:正三角形ABC的內(nèi)切圓面積為S1,外接圓面積為S2,則
S1
S2
=
1
4
,推廣到空間可以得到類似結(jié)論;已知正四面體P-ABC的內(nèi)切球體積為V1,外接球體積為V2,則
V1
V2
=______.
從平面圖形類比空間圖形,從二維類比三維,
可得如下結(jié)論:正四面體的外接球和內(nèi)切球的半徑之比是 3:1
故正四面體P-ABC的內(nèi)切球體積為V1,外接球體積為V2之比等于
V1
V2
=(
1
3
)
3
=
1
27

故答案為:
1
27

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對(duì)于定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123439430212.gif" style="vertical-align:middle;" />的函數(shù),若同時(shí)滿足:①內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間,使上的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123439570292.gif" style="vertical-align:middle;" />;那么把函數(shù))叫做閉函數(shù).
(1) 求閉函數(shù)符合條件②的區(qū)間;
(2) 若是閉函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面幾何中,△ABC的內(nèi)角平分線CE分AB所成線段的比為
AE
EB
=
AC
BC
,把這個(gè)結(jié)論類比到空間:在正三棱錐A-BCD中(如圖所示),平面DEC平分二面角A-CD-B且與AB相交于E,則得到的類比的結(jié)論是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)S、V分別表示面積和體積,如△ABC面積用S△ABC表示,三棱錐O-ABC的體積用VO-ABC表示.對(duì)于命題:如果O是線段AB上一點(diǎn),則|
OB
|•
OA
+|
OA
|•
OB
=
0
.將它類比到平面的情形是:若O是△ABC內(nèi)一點(diǎn),有S△OBC
OA
+S△OCA
OB
+S△OBA
OC
=
0
.將它類比到空間的情形應(yīng)該是:若O是三棱錐A-BCD內(nèi)一點(diǎn),則有______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面幾何里有射影定理:設(shè)△ABC的兩邊AB⊥AC,D是A點(diǎn)在BC邊上的射影,則AB2=BD•BC.拓展到空間,在四面體A-BCD中,DA⊥面ABC,點(diǎn)O是A在面BCD內(nèi)的射影,且O在△BCD內(nèi),類比平面三角形射影定理,△ABC,△BOC,△BDC三者面積之間關(guān)系為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

“當(dāng)一個(gè)圓與一個(gè)正方形的周長(zhǎng)相等時(shí),這個(gè)圓的面積比正方形的面積大”,將此結(jié)論由平面類比到空間的一個(gè)正確的命題:______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知命題:平面上一矩形ABCD的對(duì)角線AC與邊AB、AD所成的角分別為α、β(如圖1),則cos2α+cos2β=1.用類比的方法,把它推廣到空間長(zhǎng)方體中,試寫出相應(yīng)的一個(gè)真命題并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用反證法證明命題:“若整系數(shù)一元二次方程有有理根,那么中至少有一個(gè)是偶數(shù)時(shí),下列假設(shè)中正確的是
A.假設(shè)都是偶數(shù)
B.假設(shè)都不是偶數(shù)
C.假設(shè)至多有一個(gè)是偶數(shù)
D.假設(shè)至多有兩個(gè)是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù),若的所有可能值為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案