【題目】已知數(shù)列{an}的前n項和為Sn,且滿足Sn+n=2an(n∈N*).
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)若bn=nan+n,數(shù)列{bn}的前n項和為Tn,求滿足不等式的n的最小值.
【答案】(1),n∈N*;(2)11
【解析】
(1)易求得=1,由題意,所以,兩個式子做差變形可得遞推關系式。根據(jù)等比數(shù)列的定義可得結論,利用等比數(shù)列通項公式可求得an。(2)bn是一個等比數(shù)列與一個等差數(shù)列相乘的形式,利用錯位相減可求得其前n項和。再通過構造新數(shù)列以及其增減性得出滿足不等式的最小n值。
(1)證明:當n=1時,a1+1=2a1,∴a1=1.∵Sn+n=2an,n∈N*,
∴當n≥2時,Sn-1+n-1=2an-1,兩式相減得:an+1=2an-2an-1,即an=2an-1+1,
∴an+1=2(an-1+1),∴數(shù)列{an+1}為以2為首項,2為公比的等比數(shù)列,
∴,則,n∈N*;
(2)∵,
∴,
∴,
兩式相減得:,
∴,由,得,
設,∵>0,∴數(shù)列{cn}為遞增數(shù)列,
∵,,
∴滿足不等式的n的最小值為11.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,EB垂直于菱形ABCD所在平面,且EB=BC=2,∠BAD=60°,點G、H分別為邊CD、DA的中點,點M是線段BE上的動點.
(I)求證:GH⊥DM;
(II)當三棱錐D-MGH的體積最大時,求點A到面MGH的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,且函數(shù)是偶函數(shù).
(1)求的解析式;
(2)若不等式在上恒成立,求的取值范圍;
(3)若函數(shù)恰好有三個零點,求的值及該函數(shù)的零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在邊長為的菱形中,.點,分別在邊,上,點與點,不重合,,.沿將翻折到的位置,使平面平面.
(1)求證:平面;
(2)當與平面所成的角為時,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校學生社團組織活動豐富,學生會為了解同學對社團活動的滿意程度,隨機選取了100位同學進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6組,制成如圖所示頻率分布直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的中位數(shù);
(3)現(xiàn)從被調(diào)查的問卷滿意度評分值在[60,80)的學生中按分層抽樣的方法抽取5人進行座談了解,再從這5人中隨機抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了解該校多媒體教學普及情況,根據(jù)年齡按分層抽樣的方式調(diào)查了該校50名教師,他們的年齡頻數(shù)及使用多媒體教學情況的人數(shù)分布如下表:
(1)由以上統(tǒng)計數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有的把握認為以40歲為分界點對是否經(jīng)常使用多媒體教學有差異?
附:,.
(2)若采用分層抽樣的方式從年齡低于40歲且經(jīng)常使用多媒體的教師中選出6人,再從這6人中隨機抽取2人,求這2人中至少有1人年齡在30-39歲的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學團委組織了“紀念抗日戰(zhàn)爭勝利73周年”的知識競賽,從參加競賽的學生中抽出60名學生,將其成績(均為整數(shù))分成六段,,…,后,畫出如圖所示的部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:
(1)求第四組的頻率,并補全這個頻率分布直方圖;
(2)估計這次競賽的及格率(60分及以上為及格)和平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一矩形的一邊在軸上,另兩個頂點在函數(shù)的圖像上,如圖,則此矩形繞軸旋轉(zhuǎn)而成的幾何體的體積的最大值是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com