雙曲線x2-y2=1的左焦點為F,過點F且斜率為k的直線l與雙曲線左支上位于x軸下方(不包括與x軸的交點)有且僅有一個交點,則直線l的斜率k的取值范圍是(    )

A.(-∞,0)∪[1,+∞                      B.(-∞,0)∪(1,+∞)

C.(-∞,-1)∪[1,+∞                     D.(-∞,-1)∪(1,+∞)

B

解析:結(jié)合圖形,當(dāng)l平行于雙曲線的漸近線y=x,即斜率為1時,l與左下支無交點;當(dāng)l為x軸時,與左下支亦無交點,此時k=0.

再根據(jù)直線l繞F的旋轉(zhuǎn)方向,可得出k∈(-∞,0)∪(1,+∞),故選B.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓
x2
a2
+
y2
b2
=1
過拋物線y2=8x的焦點,且與雙曲線x2-y2=1有相同的焦點,則該橢圓的方程為( 。
A、
x2
4
+
y2
2
=1
B、
x2
3
+y2=1
C、
x2
2
+
y2
4
=1
D、x2+
y2
3
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓
x2
a2
+
y2
b2
=1
與雙曲線x2-y2=1有相同的焦點,且過拋物線y2=8x的焦點,則該橢圓的方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A為雙曲線x2-y2=1的左頂點,點B和點C在雙曲線的右分支上,△ABC是等邊三角形,則△ABC的面積是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知a2+b2+c2=1,x2+y2+z2=9,ax+by+cz≤t,求t 的最小值.
(2)求直線
x=2+t
y=
3
t
(t為參數(shù))被雙曲線x2-y2=1截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點P(1,0),傾斜角為
π3
,
(1)求直線l的參數(shù)方程   
(2)求直線l被雙曲線x2-y2=1截得的弦長.

查看答案和解析>>

同步練習(xí)冊答案