已知a、b、c為△ABC的三邊長,且關(guān)于x的方程x2-2x+lg(c2-b2)-lga2+1=0有等根,試判斷△ABC的形狀.
考點(diǎn):對數(shù)的運(yùn)算性質(zhì)
專題:解三角形
分析:關(guān)于x的方程x2-2x+lg(c2-b2)-lga2+1=0有等根,可得△=0,化為lg(c2-b2)=lga2,即c2-b2=a2,即可得出.
解答: 解:∵關(guān)于x的方程x2-2x+lg(c2-b2)-lga2+1=0有等根,
∴△=4-4[lg(c2-b2)-2lga+1]=0,
化為lg(c2-b2)=lga2,
∴c2-b2=a2
即c2=a2+b2
∴△ABC為直角三角形.
點(diǎn)評:本題考查了一元二次方程有實(shí)數(shù)根與判別式的關(guān)系、對數(shù)的運(yùn)算性質(zhì)、勾股定理的逆定理,考查了計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)y=f(x)定義域為A,函數(shù)y=g(x)的定義域為B,則函數(shù)y=f(x)-g(x)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在邊長為1的等邊三角形ABC中,
BC
=
a
,
CA
=
b
,
AB
=
c
,試求
a
b
+
b
c
+
c
a
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用列舉法表示集合A={n∈N|
n-2
n+1
∈N,n≤5}為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an},{bn},{cn}是三個數(shù)列,{an}是等差數(shù)列,a2=4,a4=8,{cn}是第三項為8,公比為4的等比數(shù)列.
(1)求數(shù)列{an}及{cn}的通項公式;
(2)若數(shù)列{bn}滿足:log2cn=
a1b1+a2b2+…anbn
a1+a2+…+an
,求證:點(diǎn)列P1(1,b1),P2(2,b2),…Pn(n,bn)在同一條直線上,并求此直線的斜率;
(3)記數(shù)列{an}、{bn}的前m項和分別為Am和Bm,對任意自然數(shù)n,是否總存在與n相關(guān)的自然數(shù)m,使得anBm=bnAm?若存在,求出m與n的關(guān)系,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|-2≤x≤a},集合B={y|y=x2,x∈A};
(1)化簡集合B;
(2)設(shè)集合C={z|z=2x+3,x∈A},是否存在實(shí)數(shù)a,使得B⊆C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用列舉法表示下列集合:
(1)不大于10的非負(fù)偶數(shù)集;
(2)自然數(shù)中不大于10的質(zhì)數(shù)集;
(3)方程 x2+2x-15=0的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把正整數(shù)排列成如圖甲的三角形數(shù)陣,然后擦去第偶數(shù)行的奇數(shù)和第奇數(shù)行中的偶數(shù),得到如圖乙的三角數(shù)陣,再把圖乙中的數(shù)按從小到大的順序排成一列,得到數(shù)列{an},若an=2013,則n的值為( 。
A、1029B、1031
C、1033D、1035

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2-2x+1,x∈[-2,3],求函數(shù)的值域.

查看答案和解析>>

同步練習(xí)冊答案