直線l過點A(2,1),B(1,m2)(m∈R),則直線l斜率的取值范圍是(  )
A、(-∞,-1]
B、(-∞,1]
C、[-1,+∞)
D、[1,+∞)
考點:直線的斜率
專題:直線與圓
分析:利用斜率公式寫出斜率的關(guān)系式,然后求出范圍即可.
解答: 解:直線l過點A(2,1),B(1,m2)(m∈R),
則直線l斜率k=
m2-1
1-2
=-m2+1≤1.
直線l斜率的取值范圍是:(-∞,1].
故選:B.
點評:本題考查直線的斜率公式的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

己知f(x)=
(1-2a)x+3a,x<1
lnx,x≥1
的值域為R,那么a的取值范圍是(  )
A、(一∞,一1]
B、(一l,
1
2
C、[-1,
1
2
D、(0,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓(x-3)2+y2=16和圓(x+1)2+(y-m)2=1相切,則實數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)a、b、c、d滿足|b+a2-3lna|+(c-d+2)2=0,則(a-c)2+(b-d)2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Z1是虛數(shù),Z2=Z1+
1
Z1
是實數(shù),且-1≤Z2≤1.
(1)求|Z1|的值以及Z1的實部的取值范圍;
(2)若ω=
1-Z1
1+Z1
.求證ω為純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
lnx-2x
2
的圖象在點(1,-1)處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)y=f(x)滿足當(dāng)x<0時,f(x)=x2,則
f(f(…f(1)))
2015個f
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(a2-a-1)x 
1
a-2
為冪函數(shù),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若命題“?x0∈R,2x02-3ax0+9<0”為假命題,則實數(shù)a的取值范圍是(  )
A、[-2
2
,2
2
]
B、(-2
2
,2
2
C、(-∞,-2
2
]∪[2
2
,+∞)
D、(-∞,-2
2
)∪(2
2
,+∞)

查看答案和解析>>

同步練習(xí)冊答案