【題目】如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中點(diǎn). 求證:
(1)PA∥平面BDE;
(2)BD⊥平面PAC.
【答案】
(1)證明:連接OE,
在△CAP中,CO=OA,CE=EP,
∴PA∥EO,
又∵PA平面BDE,EO平面BDE,
∴PA∥平面BDE
(2)證明∵PO⊥底面ABCD,BD平面ABCD,
∴BD⊥PO
又∵四邊形ABCD是正方形,
∴BD⊥AC
∵AC∩PO=O,AC,PO平面PAC
∴BD⊥平面PAC
【解析】(1)連接OE,根據(jù)三角形中位線定理,可得PA∥EO,進(jìn)而根據(jù)線面平行的判定定理,得到PA∥平面BDE.(2)根據(jù)線面垂直的定義,可由PO⊥底面ABCD得到BD⊥PO,結(jié)合四邊形ABCD是正方形及線面垂直的判定定理可得BD⊥平面PAC
【考點(diǎn)精析】掌握直線與平面平行的判定和直線與平面垂直的判定是解答本題的根本,需要知道平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某水泥廠銷售工作人員根據(jù)以往該廠的銷售情況,繪制了該廠日銷售量的頻率分布直方圖,如圖所示:將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨(dú)立.
(1)求未來3天內(nèi),連續(xù)2天日銷售量不低于8噸,另一天日銷售量低于8噸的概率;
(2)用X表示未來3天內(nèi)日銷售量不低于8噸的天數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京故宮博物院成立于1925年10月10日,是在明、清朝兩代皇宮及其宮廷收藏的基礎(chǔ)上建立起來的中國綜合性博物館,每年吸引著大批游客參觀游覽下圖是從2012年到2017年每年參觀人數(shù)的折線圖根據(jù)圖中信息,下列結(jié)論中正確的是
A. 2013年以來,每年參觀總?cè)舜沃鹉赀f增
B. 2014年比2013年增加的參觀人次不超過50萬
C. 2012年到2017年這六年間,2017年參觀總?cè)舜巫疃?/span>
D. 2012年到2017年這六年間,平均每年參觀總?cè)舜纬^160萬
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|(x﹣2m+1)(x﹣m+2)<0},B={x|1≤x+1≤4}.
(1)若m=1,求A∩B;
(2)若A∩B=A,求實(shí)數(shù)m的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合A={x|ln(x﹣l)>0},B={x|x2≤9},則A∩B=( )
A.(2,3)
B.[2,3)
C.(2,3]
D.[2,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù))M是C1上的動(dòng)點(diǎn),P點(diǎn)滿足 =2 ,P點(diǎn)的軌跡為曲線C2
(1)求C2的方程;
(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線θ= 與C1的異于極點(diǎn)的交點(diǎn)為A,與C2的異于極點(diǎn)的交點(diǎn)為B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓過點(diǎn),且圓心在直線上.
(1) 求圓的方程;
(2)問是否存在滿足以下兩個(gè)條件的直線:①斜率為;②直線被圓截得的弦為,以為直徑的圓過原點(diǎn). 若存在這樣的直線,請求出其方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求與橢圓有公共焦點(diǎn),并且離心率為的雙曲線方程.
(2)已知斜率為1的直線l過橢圓的右焦點(diǎn)F交橢圓于A、B兩點(diǎn),求弦AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+ +b(x≠0),其中a,b∈R.若對任意的a∈[ ,2],不等式f(x)≤10在x∈[ ,1]上恒成立,則b的取值范圍為明 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com