【題目】已知圓經(jīng)過變換后得曲線.
(1)求的方程;
(2)若為曲線上兩點, 為坐標原點,直線的斜率分別為且,求直線被圓截得弦長的最大值及此時直線的方程.
【答案】(1)(2)直線被圓: 截得弦長的最大值為,
此時,直線的方程為
【解析】試題分析:(1)根據(jù)轉(zhuǎn)移法求軌跡方程:將代入得,化簡可得(2)先根據(jù)斜率公式表示為,再聯(lián)立直線方程與橢圓方程,結合韋達定理可得,由垂徑定理得圓心到直線的距離最小時,弦長最大,而,因此當時,弦長最大,可得此時直線的方程.
試題解析:解:(Ⅰ)將代入得,
化簡得,即為曲線的方程.
(Ⅱ)設, ,直線與圓: 的交點為.
當直線軸時, ,
由得或
此時可求得.
當直線與軸不垂直時,設直線的方程為,
聯(lián)立消得,
, , ,
所以 ,
由得,
此時.
圓: 的圓心到直線的距離為,
所以,
得,
所以當時, 最大,最大值為,
綜上,直線被圓: 截得弦長的最大值為,
此時,直線的方程為.
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列的前項和為, 已知,且, , 三個數(shù)依次成等差數(shù)列.
(Ⅰ)求的值;
(Ⅱ)求數(shù)列的通項公式;
(Ⅲ)若數(shù)列滿足,設是其前項和,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知直線關于直線對稱的直線為,直線與橢圓分別交于點、和、,記直線的斜率為.
(Ⅰ)求的值;
(Ⅱ)當變化時,試問直線是否恒過定點? 若恒過定點,求出該定點坐標;若不恒過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當x>0時,函數(shù)f(x)的解析式為 .
(1)求當x<0時函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(0,+∞)上的是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD中,
(1)點E是AB的中點,點F是BC的中點,將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于點A′.求證:A′D⊥EF.
(2)當BE=BF=BC時,求三棱錐A′﹣EFD體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某理財公司有兩種理財產(chǎn)品和.這兩種理財產(chǎn)品一年后盈虧的情況如下(每種理財產(chǎn)品的不同投資結果之間相互獨立):
產(chǎn)品
產(chǎn)品(其中)
(Ⅰ)已知甲、乙兩人分別選擇了產(chǎn)品和產(chǎn)品進行投資,如果一年后他們中至少有一人獲利的概率大于,求的取值范圍;
(Ⅱ)丙要將家中閑置的10萬元錢進行投資,以一年后投資收益的期望值為決策依據(jù),在產(chǎn)品和產(chǎn)品之中選其一,應選用哪個?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1,E,F(xiàn),G分別是DD1 , AB,CC1的中點,則異面直線A1E與GF所成角為( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com