【題目】極坐標(biāo)與參數(shù)方程
已知曲線:(為參數(shù)),:(為參數(shù)).
(1)將、的方程化為普通方程;
(2)若與交于M、N,與x軸交于P,求的最小值及相應(yīng)的值.
【答案】(1)x2+12y2=1,(2),
【解析】
(1)利用sin2θ+cos2θ=1,即可將曲線化為普通方程;消去參數(shù),即可得出的普通方程.
(2)C2與x軸交于P,把C2的參數(shù)方程代入曲線化為普通方程,整理等關(guān)于t的一元二次方程,利用直線參數(shù)方程的幾何意義,得|PM||PN|=﹣t1t2,進而求出最小值.
解:(1)由曲線C1:(θ為參數(shù)),利用sin2θ+cos2θ==1,化為x2+12y2=1.
由C2:(t為參數(shù)),消去參數(shù)t可得:.
(2)C2與x軸交于P,
把C2:(t為參數(shù)).代入曲線C1可得:(2+22sin2α)t2+﹣1=0.
∴|PM||PN|=﹣t1t2=≥,
∴|PM||PN|的最小值,此時.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年3月智能共享單車項目正式登陸某市,兩種車型“小綠車”、“小黃車”采用分時段計費的方式,“小綠車”每30分鐘收費元不足30分鐘的部分按30分鐘計算;“小黃車”每30分鐘收費1元不足30分鐘的部分按30分鐘計算有甲、乙、丙三人相互獨立的到租車點租車騎行各租一車一次設(shè)甲、乙、丙不超過30分鐘還車的概率分別為,,,三人租車時間都不會超過60分鐘甲、乙均租用“小綠車”,丙租用“小黃車”.
求甲、乙兩人所付的費用之和等于丙所付的費用的概率;
2設(shè)甲、乙、丙三人所付的費用之和為隨機變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,太陽能技術(shù)運用的步伐日益加快.2002年全球太陽能電池的年生產(chǎn)量達到670 MW,年生產(chǎn)量的增長率為34%.以后四年中,年生產(chǎn)量的增長率逐年遞增2%(如,2003年的年生產(chǎn)量的增長率為36%).
(1)求2006年全球太陽能電池的年生產(chǎn)量(結(jié)果精確到0.1 MW);
(2)目前太陽能電池產(chǎn)業(yè)存在的主要問題是市場安裝量遠小于生產(chǎn)量,2006年的實際安裝量為1420MW.假設(shè)以后若干年內(nèi)太陽能電池的年生產(chǎn)量的增長率保持在42%,到2010年,要使年安裝量與年生產(chǎn)量基本持平(即年安裝量不少于年生產(chǎn)量的95%),這四年中太陽能電池的年安裝量的平均增長率至少應(yīng)達到多少(結(jié)果精確到0.1%)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,橢圓C:離心率為,其短軸長為2.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)如圖,A為橢圓C的左頂點,P,Q為橢圓C上兩動點,直線PO交AQ于E,直線QO交AP于D,直線OP與直線OQ的斜率分別為,,且, ,(為非零實數(shù)),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高科技公司研究開發(fā)了一種新產(chǎn)品,生產(chǎn)這種新產(chǎn)品的每天固定成本為元,每生產(chǎn)件,需另投入成本為元,每件產(chǎn)品售價為元(該新產(chǎn)品在市場上供不應(yīng)求可全部賣完).
(1)寫出每天利潤關(guān)于每天產(chǎn)量的函數(shù)解析式;
(2)當(dāng)每天產(chǎn)量為多少件時,該公司在這一新產(chǎn)品的生產(chǎn)中每天所獲利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市舉行“中學(xué)生詩詞大賽”,分初賽和復(fù)賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.則獲得復(fù)賽資格的人數(shù)為()
A.640B.520C.280D.240
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
()當(dāng)時,求此函數(shù)對應(yīng)的曲線在處的切線方程.
()求函數(shù)的單調(diào)區(qū)間.
()對,不等式恒成立,求的取值范圍.
【答案】();()見解析;()當(dāng)時, ,當(dāng)時
【解析】試題分析:(1)利用導(dǎo)數(shù)的意義,求得切線方程為;(2)求導(dǎo)得,通過, , 分類討論,得到單調(diào)區(qū)間;(3)分離參數(shù)法,得到,通過求導(dǎo),得, .
試題解析:
()當(dāng)時, ,
∴, ,
,∴切線方程.
()
.
令,則或,
當(dāng)時, 在, 上為增函數(shù).
在上為減函數(shù),
當(dāng)時, 在上為增函數(shù),
當(dāng)時, 在, 上為單調(diào)遞增,
在上單調(diào)遞減.
()當(dāng)時, ,
當(dāng)時,由得
,對恒成立.
設(shè),則
,
令得或,
極小 |
,∴, .
點睛:本題考查導(dǎo)數(shù)在函數(shù)綜合題型中的應(yīng)用。含參的函數(shù)單調(diào)性討論,考查學(xué)生的分類討論能力,本題中,結(jié)合導(dǎo)函數(shù)的形式,分類討論;含參的恒成立問題,一般采取分離參數(shù)法,解決恒成立。
【題型】解答題
【結(jié)束】
20
【題目】已知集合,集合且滿足:
, , 與恰有一個成立.對于定義 .
()若, , , ,求的值及的最大值.
()取, , , 中任意刪去兩個數(shù),即剩下的個數(shù)的和為,求證: .
()對于滿足的每一個集合,集合中是否都存在三個不同的元素, , ,使得恒成立,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com