已知雙曲線C:=1(a>0,b>0)的左、右焦點分別F1、F2,O為雙曲線的中心,P是雙曲線右支上異于頂點的任一點,△PF1F2的內(nèi)切圓的圓心為I,且⊙I與x軸相切于點A,過F2作直線PI的垂線,垂足為B,若e為雙曲線的離心率,下面八個命題:
①△PF1F2的內(nèi)切圓的圓心在直線x=b上;    
②△PF1F2的內(nèi)切圓的圓心在直線x=a上;
③△PF1F2的內(nèi)切圓的圓心在直線OP上;     
④△PF1F2的內(nèi)切圓必通過點(a,0);
⑤|OB|=e|OA|;        
⑥|OB|=|OA|;        
⑦|OA|=e|OB|;        
⑧|OA|與|OB|關(guān)系不確定.
其中正確的命題的代號是   
【答案】分析:利用切線長定理,結(jié)合雙曲線的定義,把|PF1|-|PF2|=2a,轉(zhuǎn)化為|AF1|-|AF2|=2a,從而求得點A的橫坐標(biāo).再在三角形PCF2中,由題意得,它是一個等腰三角形,從而在三角形F1CF2中,利用中位線定理得出OB,從而解決問題.
解答:解:根據(jù)題意得F1(-c,0)、F2(c,0),
設(shè)△PF1F2的內(nèi)切圓分別與PF1、PF2切于點A1、B1,與F1F2切于點A,
則|PA1|=|PB1|,|F1A1|=|F1A|,|F2B1|=|F2A|,
又點P在雙曲線右支上,
所以|PF1|-|PF2|=2a,故|F1A|-|F2A|=2a,而|F1A|+|F2A|=2c,
設(shè)A點坐標(biāo)為(x,0),
則由|F1A|-|F2A|=2a可得(x+c)-(c-x)=2a
解得x=a,則△PF1F2的內(nèi)切圓必通過點(a,0),△PF1F2的內(nèi)切圓的圓心在直線x=a上,
故②,④正確.
由于|OA|=a,在三角形PCF2中,由題意得,三角形PCF2是一個等腰三角形,PC=PF2
∴在三角形F1CF2中,有:
OB=CF1=(PF1-PC)=(PF1-PF2)=×2a=a.
∴|OB|=|OA|.⑥正確.
故答案為:②,④,⑥.
點評:本題考查雙曲線的定義、切線長定理.解答的關(guān)鍵是充分利用平面幾何的性質(zhì),如三角形內(nèi)心的性質(zhì)等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:-=1(0<<1)的右焦點為B,過點B作直線交雙曲線C的右支于M、N兩點,試確定的范圍,使·=0,其中點O為坐標(biāo)原點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 (2012年高考湖南卷理科5)已知雙曲線C :-=1的焦距為10 ,點P (2,1)在C 的漸近線上,則C的方程為

A.-=1  B.-=1  C.-=1    D.-=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣西南寧二中高三(下)5月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知雙曲線C:=1(a>0,b>0)的離心率為,右準線方程為x=
(I)求雙曲線C的方程;
(Ⅱ)設(shè)直線l是圓O:x2+y2=2上動點P(x,y)(xy≠0)處的切線,l與雙曲線C交于不同的兩點A,B,證明∠AOB的大小為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆湖南邵陽石齊學(xué)校高二第三次月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

 已知雙曲線C :-=1的焦距為10 ,點P (2,1)在C 的漸近線上,則C的方程為(   )

A. -=1  B. -=1  C. -=1    D. -=1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試理科數(shù)學(xué)(湖南卷解析版) 題型:選擇題

已知雙曲線C :-=1的焦距為10 ,點P (2,1)在C 的漸近線上,則C的方程為

A、-=1  B、-=1  C、-=1    D、-=1[w~#

 

查看答案和解析>>

同步練習(xí)冊答案