【題目】已知圓.
(1)過原點的直線被圓所截得的弦長為2,求直線的方程;
(2)過外的一點向圓引切線,為切點,為坐標原點,若,求使最短時的點坐標.
【答案】(1) 或;(2)
【解析】
(1)利用垂徑定理求出圓心到直線的距離,再分過原點的直線的斜率不存在與存在兩種情況,分別根據(jù)點到線的距離公式求解即可.
(2)設(shè),再根據(jù)圓的切線長公式以及求出關(guān)于關(guān)于的關(guān)系,再代入的表達式求取得最小值時的即可.
(1) 圓圓心為,半徑為.
當(dāng)直線的斜率不存在時,圓心到直線的距離,故不存在.
當(dāng)直線的斜率存在時,設(shè)的方程:,即.
則圓心到的距離,由垂徑定理得,
即,即,解得.
故的方程為或
(2) 如圖,設(shè), 因為,故,則,
即,化簡得,即.
此時,
故當(dāng),即時最短.
此時
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過橢圓W:的左焦點作直線交橢圓于兩點,其中 ,另一條過的直線交橢圓于兩點(不與重合),且點不與點重合.過作軸的垂線分別交直線,于,.
(Ⅰ)求點坐標和直線的方程;
(Ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知直角梯形ABCD中,,,過A作,垂足為E.現(xiàn)將沿AE折疊,使得,如圖②.
(1)求證:;
(2)若FG分別為AE,DB的中點.
(i)求證:平面DCE;
(ii)求證:平面平面DBC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有編號為1,2,3…n的n個學(xué)生,入座編號為1,2,3…n的n個座位,每個學(xué)生規(guī)定坐一個座位, 設(shè)學(xué)生所坐的座位號與該生的編號不同的學(xué)生人數(shù)為, 已知時, 共有6種坐法.
(1)求的值;
(2)求隨機變量的概率分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在零點,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱錐中,是邊長為4的正三角形,平面平面,SA=SC=,M,N分別為AB,SB的中點.
(1)求證:AC⊥SB;
(2)求二面角N-CM-B的余弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】樹林的邊界是直線(如圖所在的直線),一只兔子在河邊喝水時發(fā)現(xiàn)了一只狼,兔子和狼分別位于的垂線上的點點和點處,(為正常數(shù)),若兔子沿方向以速度向樹林逃跑,同時狼沿線段方向以速度進行追擊(為正常數(shù)),若狼到達處的時間不多于兔子到達M處的時間,狼就會吃掉兔子.
(1)求兔子的所有不幸點(即可能被狼吃掉的點)的區(qū)域面積;
(2)若兔子要想不被狼吃掉,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com