11.關(guān)于函數(shù)y=sin|2x|+|cos2x|下列說法正確的是(  )
A.是周期函數(shù),周期為πB.在$[{-\frac{π}{2},-\frac{π}{4}}]$上是單調(diào)遞增的
C.在$[{-\frac{π}{3},\frac{7π}{6}}]$上最大值為$\sqrt{3}$D.關(guān)于直線$x=\frac{π}{4}$對稱

分析 分類討論、利用兩角和差的正弦公式化簡函數(shù)的解析式,再利用正弦函數(shù)的圖象和性質(zhì)逐一判斷各個(gè)選項(xiàng)是否正確,從而得出結(jié)論.

解答 解:對于函數(shù)y=sin|2x|+|cos2x|,當(dāng)2x∈[0,$\frac{π}{2}$),y=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$);
當(dāng)2x∈[$\frac{π}{2}$,π),y=sin2x-cos2x=$\sqrt{2}$sin(2x-$\frac{π}{4}$);
當(dāng)2x∈[π,$\frac{3π}{2}$),y=-sin2x-cos2x=-$\sqrt{2}$sin(2x+$\frac{π}{4}$);
當(dāng)2x∈[$\frac{3π}{2}$,2π),y=-sin2x+cos2x=-$\sqrt{2}$sin(2x-$\frac{π}{4}$);
故函數(shù)y的周期為2π,故排除A.
在$[{-\frac{π}{2},-\frac{π}{4}}]$上,2x∈[-π,-$\frac{π}{2}$],即2x∈[π,$\frac{3π}{2}$],2x+$\frac{π}{4}$∈[$\frac{5}{4}$π,$\frac{7π}{4}$],函數(shù)y=-$\sqrt{2}$sin(2x+$\frac{π}{4}$) 單調(diào)遞減,故B正確.
由于函數(shù)y的最大值最大值為$\sqrt{2}$,不會是$\sqrt{3}$,故排除C;
當(dāng)$x=\frac{π}{4}$時(shí),函數(shù)y=1,不是最值,故函數(shù)的圖象不會關(guān)于直線$x=\frac{π}{4}$對稱,故排除D,
故選:B.

點(diǎn)評 本題主要考查兩角和差的正弦公式,正弦函數(shù)的圖象和性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y-1≤0}\\{x≥0}\end{array}\right.$,則z=2x-y的最大值為( 。
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線l的方程為(2-m)x+(2m+1)y+3m+4=0,其中m∈R.
(1)求證:直線l恒過定點(diǎn);
(2)當(dāng)m變化時(shí),求點(diǎn)P(3,1)到直線l的距離的最大值;
(3)若直線l分別與x軸、y軸的負(fù)半軸交于A,B兩點(diǎn),求△AOB面積的最小值及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,則函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)的極小值點(diǎn)的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=xex+f′(0),則曲線y=f(x)在x=1處的切線方程是y=2ex-e+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知非零向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=2|{\overrightarrow b}|$,$|{\overrightarrow a-\overrightarrow b}|=|{\overrightarrow a+2\overrightarrow b}|$,則$\overrightarrow a$與$\overrightarrow b$的夾角的余弦值為( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$-\frac{1}{3}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{a-1}{2}$x2+ax+a(a∈R)的導(dǎo)數(shù)為f'(x),若對任意的x∈[2,3]都有f'(x)≤f(x),則a的取值范圍是( 。
A.$[{\frac{2}{3},+∞})$B.$[{1,\frac{5}{3}}]$C.$[{\frac{1}{3},+∞})$D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.通過隨機(jī)詢問某校110名高中學(xué)生在購買食物時(shí)是否看營養(yǎng)說明,得到如下列聯(lián)表:
 總計(jì)
看營養(yǎng)說明503080
不看營養(yǎng)說明102030
總計(jì)6050110
(1)從這50名女生中按是否看營養(yǎng)說明分層抽樣,抽取一個(gè)容量為5的樣本,問樣本中看與不看營養(yǎng)說明的女生各有多少名?
(2)從(1)中的5名女生中隨機(jī)選取2名進(jìn)行深度訪談,求選到看與不看營養(yǎng)說明的女生各1名的概率;
(3)根據(jù)以上列聯(lián)表,問能否在犯錯(cuò)誤的概率不超過0.010的前提下認(rèn)為“性別與在購買食物時(shí)看營養(yǎng)說明有關(guān)系”?
參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若f(x)=$\left\{\begin{array}{l}sinx,0≤x≤π\(zhòng)\ cosx,-π≤x≤0.\end{array}$則$\int{\begin{array}{l}π\(zhòng)\{-π}\end{array}}$f(x)dx=2.

查看答案和解析>>

同步練習(xí)冊答案