【題目】設(shè)不等式表示的平面區(qū)別為.區(qū)域內(nèi)的動點到直線和直線的距離之積為2.記點的軌跡為曲線.過點的直線與曲線交于、兩點.

1)求曲線的方程;

2)若垂直于軸,為曲線上一點,求的取值范圍;

3)若以線段為直徑的圓與軸相切,求直線的斜率.

【答案】1;(2;(3

【解析】

1)根據(jù)“區(qū)域內(nèi)的動點到直線和直線的距離之積為”列方程,化簡后求得曲線的方程.

2)求得兩點的坐標,利用平面向量數(shù)量積的坐標運算化簡,由此求得的取值范圍.

3)設(shè)出直線的方程,聯(lián)立直線的方程和曲線,寫出韋達定理.求得以為直徑的圓的圓心和直徑,根據(jù)圓與軸相切列方程,解方程求得直線的斜率.

1)設(shè),依題意①,因為滿足不等式,所以①可化為.

2)將代入曲線的方程,解得.,設(shè),因為為曲線上一點,故..的取值范圍是.

3)設(shè)直線的方程是,.聯(lián)立,消去,所以.

設(shè)線段的中點為,則,所以..因為以線段為直徑的圓與軸相切,所以,即,化簡得.所以直線的斜率為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】1)已知直線l過點,它的一個方向向量為

①求直線l的方程;

②一組直線,,都與直線l平行,它們到直線l的距離依次為d,,,,),且直線恰好經(jīng)過原點,試用n表示d的關(guān)系式,并求出直線的方程(用n、i表示);

2)在坐標平面上,是否存在一個含有無窮多條直線,,,的直線簇,使它同時滿足以下三個條件:①點;②,其中是直線的斜率,分別為直線x軸和y軸上的截距;③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(多選題)下列說法正確的是(

A.橢圓1上任意一點(非左右頂點)與左右頂點連線的斜率乘積為

B.過雙曲線1焦點的弦中最短弦長為

C.拋物線y22px上兩點Ax1,y1).Bx2y2),則弦AB經(jīng)過拋物線焦點的充要條件為x1x2

D.若直線與圓錐曲線有一個公共點,則該直線和圓錐曲線相切

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學為調(diào)研學生在, 兩家餐廳用餐的滿意度,從在, 兩家餐廳都用過餐的學生中隨機抽取了100人,每人分別對這兩家餐廳進行評分,滿分均為60分.

整理評分數(shù)據(jù),將分數(shù)以10為組距分成6組: , , , , ,得到餐廳分數(shù)的頻率分布直方圖,和餐廳分數(shù)的頻數(shù)分布表:

定義學生對餐廳評價的“滿意度指數(shù)”如下:

分數(shù)

滿意度指數(shù)

(Ⅰ)在抽樣的100人中,求對餐廳評價“滿意度指數(shù)”為0的人數(shù);

(Ⅱ)從該校在, 兩家餐廳都用過餐的學生中隨機抽取1人進行調(diào)查,試估計其對餐廳評價的“滿意度指數(shù)”比對餐廳評價的“滿意度指數(shù)”高的概率;

(Ⅲ)如果從 兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果你留心使會發(fā)現(xiàn),汽車前燈后的反射鏡呈拋物線的形狀,把拋物線沿它的對稱軸旋轉(zhuǎn)一周,就會形成一個拋物面.這種拋物面形狀,正是我們熟悉的汽車前燈的反射鏡形狀,這種形狀使車燈既能夠發(fā)出明亮的、照射很遠的平行光束,又能發(fā)出較暗的,照射近距離的光線.我們都知道常規(guī)的前照燈主要是由燈泡、反射鏡和透鏡三部分組成,明亮的光束,是由位于拋物面形狀反射鏡焦點的光源射出的,燈泡位于拋物面的焦點上,燈泡發(fā)出的光經(jīng)拋物面反射鏡反射形成平行光束,再經(jīng)過配光鏡的散射、偏轉(zhuǎn)作用,以達到照亮路面的效果,這樣的燈光我們通常稱為遠光燈:而較暗的光線,不是由反射鏡焦點的光源射出的,光線的行進與拋物線的對稱軸不平行,光線只能向上和向下照射,所以照射距離并不遠,如果把向上射出的光線遮。嚐艟椭荒馨l(fā)出向下的、射的很近的光線了.請用數(shù)學的語言歸納表達遠光燈的照明原理,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線Ca0,b0)的離心率為,且

1)求雙曲線C的方程;

2)已知直線與雙曲線C交于不同的兩點A,B且線段AB的中點在圓上,求m的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了選拔學生參加全市中學生物理競賽,學校先從高三年級選取60名同學進行競賽預選賽,將參加預選賽的學生成績(單位:分)按范圍,,分組,得到的頻率分布直方圖如圖:

(1)計算這次預選賽的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(2)若對得分在前的學生進行校內(nèi)獎勵,估計獲獎分數(shù)線;

(3)若這60名學生中男女生比例為,成績不低于60分評估為“成績良好”,否則評估為“成績一般”,試完成下面列聯(lián)表,是否有的把握認為“成績良好”與“性別”有關(guān)?

成績良好

成績一般

合計

男生

女生

合計

附:,

臨界值表:

0.10

0.05

0.010

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《九章算術(shù)》中記載了有關(guān)特殊幾何體的定義:陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,塹堵指底面是直角三角形,且側(cè)棱垂直于底面的三棱柱.

1)某塹堵的三視圖,如圖1,網(wǎng)格中的每個小正方形的邊長為1,求該塹堵的體積;

2)在塹堵中,如圖2,,若,當陽馬的體積最大時,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線1(a0,b0)的左、右焦點分別為F1,F2,點O為雙曲線的中心,點P在雙曲線右支上,PF1F2內(nèi)切圓的圓心為Q,圓Qx軸相切于點A,過F2作直線PQ的垂線,垂足為B,則下列結(jié)論成立的是( )

A. |OA||OB|B. |OA||OB|

C. |OA||OB|D. |OA||OB|大小關(guān)系不確定

查看答案和解析>>

同步練習冊答案