拋物線y=4x2的準線方程是                                     (    )
A.x=1B.C.y=-1D.
D

試題分析:根據題意可知 ,拋物線y=4x2可變形為,可知2p=,同時焦點在y軸上,開口向上,可知準線方程為y=-=-,故選D.
點評:解決該試題的關鍵是根據已知方程變?yōu)闃藴适,得?p的值,進而準確表示準線方程,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,短軸一個端點到右焦點的距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線l與橢圓C交于A、B兩點,坐標原點O到直線l的距離為,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若拋物線上一點到準線的距離等于它到頂點的距離,則點的坐標為____

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標系中,點,點為拋物線的焦點,
線段恰被拋物線平分.
(Ⅰ)求的值;
(Ⅱ)過點作直線交拋物線兩點,設直線、、的斜率分別為、、,問能否成公差不為零的等差數(shù)列?若能,求直線的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)是偶函數(shù),則函數(shù)的圖象與y軸交點的縱坐標的最大值為:(   )
A.-4B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C1:,拋物線C2:,且C1、C2的公共弦AB過橢圓C1的右焦點.
(Ⅰ)當AB⊥軸時,求、的值,并判斷拋物線C2的焦點是否在直線AB上;
(Ⅱ)是否存在、的值,使拋物線C2的焦點恰在直線AB上?若存在,求出符合條件的、的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線上一定點和兩動點,當時,點的橫坐標的取值范圍是(     )
A.B.C.[,1]D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若曲線與曲線有四個不同的交點,則實數(shù)m的取值范圍是(   )
A.(,)B.(,0)∪(0,)
C.[,]D.(,)∪(,+)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若拋物線的焦點在圓上,則            

查看答案和解析>>

同步練習冊答案