設(shè),為直角坐標(biāo)平面內(nèi)x軸.y軸正方向上的單位向量,若,且
(Ⅰ)求動(dòng)點(diǎn)M(x,y)的軌跡C的方程;
(Ⅱ)設(shè)曲線(xiàn)C上兩點(diǎn)A.B,滿(mǎn)足(1)直線(xiàn)AB過(guò)點(diǎn)(0,3),(2)若,則OAPB為矩形,試求AB方程.
(Ⅰ)所求軌跡方程為
(Ⅱ)所求直線(xiàn)方程為
(Ⅰ)令
則 即
即
又∵ ∴
所求軌跡方程為
(Ⅱ)解:由條件(2)可知OAB不共線(xiàn),故直線(xiàn)AB的斜率存在
設(shè)AB方程為
則
∵OAPB為矩形,∴OA⊥OB
∴ 得
所求直線(xiàn)方程為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)向量為直角坐標(biāo)平面內(nèi)x軸,y軸正方向上的單位向量.若向量,,且.
(1)求滿(mǎn)足上述條件的點(diǎn)的軌跡方程;
(2)設(shè),問(wèn)是否存在常數(shù),使得恒成立?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)向量為直角坐標(biāo)平面內(nèi)x軸,y軸正方向上的單位向量.若向量,,且.
(1)求滿(mǎn)足上述條件的點(diǎn)的軌跡方程;
(2)設(shè),問(wèn)是否存在常數(shù),使得恒成立?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)向量為直角坐標(biāo)平面內(nèi)x軸,y軸正方向上的單位向量.若向量,,且.(1)求滿(mǎn)足上述條件的點(diǎn)的軌跡方程;(2)設(shè),問(wèn)是否存在常數(shù),使得恒成立?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年上海市十四校高三(上)第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com