已知△中,,平面,、分別是、上的動(dòng)點(diǎn),且

(1)求證:不論為何值,總有平面平面;
(2)當(dāng)為何值時(shí),平面平面?
(1)見解析;(2)見解析.

試題分析:(1)通過證明⊥平面,說明平面平面;
(2)將平面平面作為條件,利用三角形關(guān)系求解.
試題解析:(1)∵⊥平面,∴
,∴⊥平面,
又∵,
∴不論為何值,恒有,
⊥平面
平面
∴不論為何值,總有平面⊥平面
(2)由(1)知,,又平面⊥平面
⊥平面,∴
,,
,,
,由,得,
,
故當(dāng)時(shí),平面平面
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正三棱柱ABCDEF中,AB=2,AD=1.P是CF的延長(zhǎng)線上一點(diǎn),F(xiàn)P=t.過A、B、P三點(diǎn)的平面交FD于M,交FE于N.

(1)求證:MN∥平面CDE;
(2)當(dāng)平面PAB⊥平面CDE時(shí),求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC∥=AD,BE∥=FA,G、H分別為FA、FD的中點(diǎn).
 
(1)證明:四邊形BCHG是平行四邊形.
(2)C、D、F、E四點(diǎn)是否共面?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線l上有兩點(diǎn)與平面α的距離相等,則直線l與平面α的位置關(guān)系是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩個(gè)不同的平面和兩條不重合的直線,則下列命題不正確的是 (    )
A.若B.若
C.若,則D.若,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知一個(gè)平面α,l為空間中的任意一條直線,那么在平面α內(nèi)一定存在直線b使得(  )
A.l∥bB.l與b相交
C.l與b是異面直線D.l⊥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若四面體ABCD的三組對(duì)棱分別相等,即AB=CD,AC=BD,AD=BC,則    (寫出所有正確結(jié)論的編號(hào)). 
①四面體ABCD每組對(duì)棱相互垂直;
②四面體ABCD每個(gè)面的面積相等;
③從四面體ABCD每個(gè)頂點(diǎn)出發(fā)的三條棱兩兩夾角之和大于90°而小于180°;
④連接四面體ABCD每組對(duì)棱中點(diǎn)的線段相互垂直平分;
⑤從四面體ABCD每個(gè)頂點(diǎn)出發(fā)的三條棱的長(zhǎng)可作為一個(gè)三角形的三邊長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線m,n和平面α,β滿足m⊥n,m⊥α,α⊥β,則(  )
A.n⊥βB.n∥β
C.n⊥αD.n∥α或n?α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,則下列為真命題的是(  )
A.若α⊥β,m⊥α,則m∥βB.若α⊥γ,β⊥γ,則α∥β
C.若m⊥α,n∥m,則n⊥αD.若m∥α,n∥α,則m∥n

查看答案和解析>>

同步練習(xí)冊(cè)答案